MATH 332, Prob \& Stat, Solutions to Test 1

1. (a), (c), (f) are always true.

For (a) and (c), use Venn diagrams; (f) follows from the definition of independence of 3 events; (b) is only true for independent events; a counterexample to (d) is to let $A=\{1\}$ and $B=\{2\}$ in a die roll which has $P(A \mid B)=0$ and $P\left(A \mid B^{c}\right)=1 / 5$; a counterexample to (e) is given in Problem 50, p. 71 in the book.

2(a) $P(A \cup B)=P(A)+P(B)-P(A) P(B)=5 / 8, P(A \cap B)=P(A) P(B)=$ 1/8
(b) $P(A \cup B)=P(A)+P(B)=3 / 4, P(A \cap B)=0$
(c) Draw a Venn diagram to argue that $A \cap B^{c}=\emptyset$ implies that $A \subseteq B$. Thus, $P(A \cup B)=P(B)=1 / 2$ and $P(A \cap B)=P(A)=1 / 4$.
3. To avoid aces, you have 12 cards in each suit to choose from. The hearts can be chosen in $\binom{12}{5}$ ways, the diamonds in $\binom{12}{3}$ ways and the remaining 5 cards in $\binom{24}{5}$ ways. As the total number of bridge hands is $\binom{52}{13}$, the answer is

$$
\frac{\binom{12}{5}\binom{12}{3}\binom{24}{5}}{\binom{52}{13}}
$$

4(a) Let D denote having the disease; let + and - denote testing positive and negative, respectively. We are given the probabilities $P(D)=1 / 10000=$ $0.0001, P(+\mid D)=1$, and $P\left(-\mid D^{c}\right)=0.99$. By LTP,

$$
P(+)=P(+\mid D) P(D)+P\left(+\mid D^{c}\right) P\left(D^{c}\right)=1 \cdot 0.0001+0.01 \cdot 0.999 \approx 0.01
$$

(b) Bayes' formula gives
$P(D \mid+)=\frac{P(+\mid D) P(D)}{P(+\mid D) P(D)+P\left(+\mid D^{c}\right) P\left(D^{c}\right)}=\frac{1 \cdot 0.0001}{1 \cdot 0.0001+0.01 \cdot 0.999} \approx 0.01$
5. Condition on the next two changes. With probability $2 / 3 \cdot 2 / 3=4 / 9$, both changes are both completions of jobs and the busy period is over without any lost jobs. With probability $1 / 3 \cdot 1 / 3=1 / 9$, both changes are arrivals
of new jobs and the second of these jobs is lost. Finally, with probability $1-(4 / 9+1 / 9)=4 / 9$, there is one completion and one arrival, in any order, and the system starts over at two jobs. Formally, let A be the event that no jobs are lost before the current busy period ends and let
$B_{1}=\{$ next two changes are completions $\}$
$B_{2}=\{$ next two changes are arrivals $\}$
$B_{3}=\{$ next two changes are one of each $\}$
Now let $q=P(A)$ and note that $P\left(A \mid B_{1}\right)=1$ and $P\left(A \mid B_{2}\right)=0$. In the third case, the system starts over with 2 jobs and thus $P\left(A \mid B_{3}\right)=q$. LTP gives

$$
\begin{gathered}
q=P(A)=P\left(A \mid B_{1}\right) P\left(B_{1}\right)+P\left(A \mid B_{2}\right) P\left(B_{2}\right)+P\left(A \mid B_{3}\right) P\left(B_{3}\right) \\
=1 \cdot 4 / 9+0 \cdot 1 / 9+q \cdot 4 / 9
\end{gathered}
$$

and we get the equation $q=4 / 9+4 q / 9$ which has solution $q=4 / 5$.
6. For any $x, F(x)=P(X \leq x)$. Moreover, the probability $P(X=x)$ is the size of the jump in F at the point x. Thus
(a) $P(X=1)=1 / 4$
(b) $P(X=2)=1 / 2$
(c) $P(X=2.5)=0$ $P(X \leq 2.5)=3 / 4$

Note that the cdf F tells us that X can take on the values 1,2 , and 3 with probabilities $1 / 4,1 / 2$, and $1 / 4$, respectively.

