Stochastic Processes, HW4

1. Consider a random walk that can not only step up or down but also stay where it is. Suppose that is steps up with probability \(p > 0 \), down with probability \(q > 0 \), and stays where it is with probability \(r \) where \(p + q + r = 1 \).

Formally, \(S_n = \sum_{k=1}^{n} X_k \) where the \(X_k \) are i.i.d. assuming the values 1, 0 and -1 with probabilities \(p, r, \) and \(q \), respectively.

Describe this random walk in a transition graph. For what values of \(p, q, r \) is it irreducible? Aperiodic? Recurrent?

Turn-in problems, due Wednesday 3/25

1(a) In problem 1 above, suppose that \(p < q \). Find \(P_0(\tau_1 < \infty) \) expressed in terms of \(p \) and \(q \) (condition on the first step).

(b) In the same problem, suppose that \(p > q \). Find \(E_0[\tau_1] \) expressed in terms of \(p \) and \(q \) (condition on the first step and remember that \(r = 1 - p - q \)).

3(a) Let \(X \) have a geometric distribution on \(\{1, 2, \ldots\} \) and let \(Y \) have a geometric distribution on \(\{0, 1, 2, \ldots\} \). Find the pgf’s \(G_X \) and \(G_Y \).

(b) The answers in (a) should satisfy the relation \(G_X(s) = sG_Y(s) \). Explain this relation by using the result for the pgf of a sum of independent random variables (remember that constants are also random variables with probability 1 for one value).