
Stochastic Processes, Solutions to Test 1

1. First chain: {n : p
(n)
00 > 0} = {4, 6, 8, ...} which gives period 2.

Second chain: {n : p
(n)
00 > 0} = {1, 2, 3, ...} which gives period 1.

2. By the Markov property

P (Xn = r,Xn+1 = r,Xn+2 = r) =

P (Xn = r)P (Xn+1 = r|Xn = r)P (Xn+2 = r|Xn+1 = r)

= P (Xn = r) · prr · prr

We have prr = 0.8 and for large n, P (Xn = r) ≈ πr which gives the desired
probability 2/3 · 0.82 ≈ 0.43.

3. Let τ denote the return time to the initial state. Then

Eπ[τ ] =
∑

i∈S

Ei[τi]πi

because Ei[τi]πi = 1 for all i. Thus we get (a) Eπ[τ ] = n and (b) Eπ[τ ] = ∞.

4(a) Since

P (Yn+1 = j|Yn = i) = P (X3n+3 = j|X2n = i) = P (X3 = j|X0 = i) = p
(3)
ij

the transition matrix of {Yn} is P 3.
(b) No. Let S = {0, 1, 2} and let p01 = p12 = p20 = 1. Then {Xn} is ir-
reducible but {Yn} is not because in the Y -chain each state can only reach
itself.
(c) Yes. Denote the transition probabilities of {Yn} by qij so that qij = p

(3)
ij .

If {Yn} is irreducible, for each pair of states i and j, there exist m and n

such that q
(m)
ij > 0 and q

(n)
ji > 0 which means that p

(3m)
ij > 0 and p

(3n)
ji > 0

and {Xn} is irreducible.



5(a) States 1 and 2 are positive recurrent; states 3 and 4 are transient. All
states have period 1 (because they have pii > 0).
(b) No, because states 1 and 2 cannot reach states 3 and 4.
(c) Solving πP = π under the condition

∑

k πk = 1 gives the unique solution
π = (1/2, 1/2, 0, 0).
(d) Yes. Intuitively, the chain will eventually leave states 3 and 4 and spend
all its time on the set {0, 1}. Formally, note that the 4 entries in the south-
east corner of P n go to 0 as n → ∞ and thus the 4 entries in the southwest
corner go to 1/2.

6. The transition graph is
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and the equation πP = π becomes
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which gives (skipping the first equation)

π1 = π0

π2 =
3

4
π1 =

3

4
π0

π3 =
3

4
π2 =

9

16
π0



π4 =
3

4
π3 =

27

64
π0

which gives a stationary distribution of the form π = π0(1, 1,
3

4
,
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,
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) which

gives

π0
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4
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= π0
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which gives π0 =
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and the stationary distribution
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Since all states communicate, the chain is irreducible and since p
(2)
00 > 0 and

p
(3)
00 > 0, the chain is aperiodic. Hence, π is the limit distribution.

(c) The proportion is π4 ≈ 0.11.

(d) The expected return time (in number of steps) is 1/π0 = 239/64 ≈ 3.73
and with 30 seconds between events we get 3.73 · 30 ≈ 112 seconds.

(e) E4[N0] = π0/π4 = 64/27 ≈ 2.4.

7(a) The coupling inequality is now

|p
(n)
ν,j − πj | ≤ P(ν,π)(T > n)

In the proof for a fixed initial state X0 = i, it was

|p
(n)
i,j − πj | ≤ P(i,π)(T > n)

where P(i,π)(T > n) → 0 as n → ∞ because we had shown that

P(i,π)(T < ∞) = 1

This in turn followed from positive recurrence of the chain Zn = (Xn, Yn)
under the probability distribution P(i,π). However, Zn is not necessarily posi-
tive recurrent under P(ν,π) as Problem 1(c) above shows. However, we do not
actually need positive recurrence, only recurrence; that is, P(ν,π)(T < ∞) = 1
and this we have because



P(ν,π)(T < ∞) =
∑

i∈S

P(i,π)(T < ∞)νi =
∑

i∈S

νi = 1

and we have

|p
(n)
ν,j − πj | ≤ P(ν,π)(T > n) → 0

as n → ∞.

(b) Whatever anecdote you use, we want to show that a process has some
“good property” (in our case, converging to the stationary distribution) by
using another independent process. There are two main points of coupling:
that the two processes meet with certainty, and that the other process has
the good property in question.


