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Recall that a Dirichlet character is called imprimitive if it is induced from a charac-
ter of smaller level, and otherwise it is called primitive. In this paper, we introduce a
modification of “inducing to higher level” which causes imprimitive characters to behave
primitively, in the sense that the properties of the associated Gauss sum and the func-
tional equation of the attached L-function take on a form usually associated to a primitive
character.
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1. Introduction

Let q be any positive integer and χ a multiplicative group homomorphism

χ : (Z/qZ)× → C×.

It is traditional to extend χ to all of Z/qZ by declaring that

χ(n) = 0 if n ∈ Z/qZ − (Z/qZ)×. (1)

In this way, χ defines a multiplicative function (known as a Dirichlet character)

χ : Z → Z/qZ → C.
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Dirichlet characters were used by Dirichlet [3] to prove his celebrated theorem on
the infinitude of primes in arithmetic progressions.

The following properties are valid for all Dirichlet characters:

(1) Complete multiplicativity:

∀n,m ∈ Z, χ(nm) = χ(n)χ(m). (2)

(2) Orthogonality:

∀χ1, χ2 mod q, 〈χ1, χ2〉q :=
∑

n∈Z/qZ

χ1(n)χ2(n)

=

{
ϕ(q) if χ1 = χ2,

0 otherwise.
(3)

Because (Z/qZ)× is self-dual, there are exactly ϕ(q) Dirichlet characters, and (3)
then implies that the square matrix of character values divided by

√
ϕ(q) is orthog-

onal. It follows that its transpose is also orthogonal, yielding the dual relationship

∀n1, n2 ∈ (Z/qZ)×,
∑

χ∈((Z/qZ)×)∗
χ(n1)χ(n2) =

{
ϕ(q) if n1 = n2,

0 otherwise.
(4)

The conductor of χ is the smallest (positive) divisor q1 of q for which there is a
homomorphism

χ1 : (Z/q1Z)× → C×

such that χ = χ1 ◦ red is the composition of χ1 with the reduction modulo q1 map.
We say that χ : (Z/qZ)× → C× is primitive if its conductor is equal to q, and
imprimitive otherwise.

Primitivity can alternatively be characterized in terms of the Gauss sum Gq(χ, n)
attached to a character χ, which is defined for n ∈ Z/qZ by

Gq(χ, n) :=
∑

m∈Z/qZ

χ(m) exp
(

2πinm
q

)
.

One can show that χ is primitive if and only if the associated Gauss sum has the
following property:

(3) Separability of the Gauss sum:

∀n ∈ Z/qZ, Gq(χ, n) = χ(n)Gq(χ, 1). (5)

The purpose of this paper is to observe that, if one makes the mild sacrificea of
replacing (2) by

∀n,m ∈ Z, χ(nm) = χ(n)χ(m), provided gcd(n,m, q) = 1, (6)

aNote that any χ : Z → C satisfying (6) is multiplicative, although perhaps not completely
multiplicative.
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then, by altering the convention (1), one may arrange that (5) holds for imprimitive
characters as well as primitive ones. Furthermore, an appropriate extension of (3)
(and hence (4)) continues to hold. For any function χ : Z/qZ → C, denote by χ×

its restriction to (Z/qZ)×. Note that if χ satisfies (6), then its restriction

χ× : (Z/qZ)× → C×

is a group homomorphism, and in this case we define the conductor of χ to be the
conductor of χ×. Our main result is the following theorem. In its statement, τ(n)
denotes the number of positive divisors of n.

Theorem 1.1. Let q be a positive integer. There exists a set C of functions χ :
Z/qZ → C with the following properties.

(1) The set C contains exactly q functions, and each χ ∈ C satisfies (6).
(2) If ψ : (Z/qZ)× → C× is a character of conductor d, then there are exactly

τ(q/d) functions χ ∈ C that extend ψ. Furthermore, if ψ is primitive (i.e. if
d = q), then its unique extension χ still satisfies (1) and (2).

(3) The identity (5) holds for all χ ∈ C.
(4) For χ1, χ2 ∈ C, we have

〈χ1, χ2〉q =

{
τ(q/d)ϕ(q) if χ1 = χ2 has conductor d,

0 otherwise.
(7)

We remark that other papers have deviated from convention (1). See for instance
[7], which does so while improving bounds for the error term in the prime geodesic
theorem, and also [2], which does so in constructing a double Dirichlet series in
connection with GL3(Z) Eisenstein series.

It is natural to ask to what extent the set C in Theorem 1.1 is unique. As we
will see, it is not unique in general, and our proof gives an explicit parametrization
of a collection of such sets C, as follows. Let

Fq := {Subsets C ⊆ CZ/qZ which satisfy the conclusions of Theorem 1.1}. (8)

For any positive integer N ≥ 1, let us make the definition

TN :=

(θj) ∈ (R/πZ)N

∣∣∣∣∣∣
N−1∑
j=0

e2θji = 0

.
Note that the symmetric group SN acts on TN by permuting the coordinates θj ,
and let

TN/SN

denote the quotient by this action. The orthogonal group is defined as usual by

ON (R) := {X ∈ GLN (R) : XtX = I}.

In
t. 

J.
 N

um
be

r 
T

he
or

y 
20

15
.1

1:
19

13
-1

93
9.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 D
r.

 R
ya

n 
D

ai
le

da
 o

n 
08

/2
7/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.



August 14, 2015 8:31 WSPC/S1793-0421 203-IJNT 1550083

1916 R. Daileda & N. Jones

Given a character ψ : (Z/qZ)× → C× of conductor dψ , define the non-negative
integers αp = αp(q), γψp and Nψ

p by

q =:
∏
p

pαp , dψ =:
∏
p

pγ
ψ
p , Nψ

p := αp − γψp , (9)

where here and throughout the paper, p denotes a prime number.

Theorem 1.2. Let

Fq := {Subsets C ⊆ CZ/qZ which satisfy the conclusions of Theorem 1.1}.
Then there is an injective map

∏
ψ∈((Z/qZ)×)∗


∏
p|q

Nψp ≥2

(
(TNψp +1/SNψp +1) ×ONψp −1(R)

)
×
∏
p|q
γψp≥1

Nψp =1

(TNψp +1/SNψp +1)


↪→ Fq,

(10)

where any empty product on the left-hand side is interpreted as a set with one
element. Furthermore, there exists a set C ∈ Fq for which C = C.

Remark 1.3. If q = pα is a prime power, then the injection (10) is a bijection.

One may interpret the Gauss sum Gq(·, n) as a linear operator on the q-
dimensional vector space of functions Z/qZ → C. In fact, in terms of the discrete
Fourier transform

f̂(n) :=
∑

m∈Z/qZ

f(m) exp
(
−2πinm

q

)
,

one finds that for characters χ,

Gq(χ, n) = χ̂(n).

In this context, the identity (5) says that a primitive character χ is a coneigenvec-

tor of the conjugate-linear operator f 	→ f̂ , with coneigenvalue Gq(χ, 1). Theorem
1.1 uses the imprimitive characters to extend the set of primitive characters to a
coneigenbasis for this operator, consisting of functions which additionally respect
the multiplicative action of (Z/qZ)× on Z/qZ.

We emphasize that, when one restricts each of the modified characters from
Theorem 1.1 to (Z/qZ)×, one recovers all multiplicative characters mod q, except
that the imprimitive characters χ induced from level d occur with multiplicity
mχ= τ(q/d). Moreover, the orthogonality relation (7) immediately implies the dual
relation

∀n1, n2 ∈ Z/qZ,
∑
χ∈C

1
mχ

χ(n1)χ(n2) =

{
ϕ(q) if n1 ≡ n2 mod q,

0 otherwise,

which is the analogue of (4) from the classical situation.
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That Theorem 1.1 extends each imprimitive character mod q to Z/qZ in multiple
ways is unavoidable: the total number of characters, namely ϕ(q), is strictly less
than the dimension of the space we are attempting to span. However, while the
“weight equidistribution” assumption mχ = τ(q/d) is a convenient and somewhat
natural choice, it may be possible to prove the analogue of Theorem 1.1 using a
different set of multiplicities for the imprimitive characters.

One advantage to our viewpoint is that we may now treat primitive and imprim-
itive characters equally when regarding their L-functions. For any character χ as in
Theorem 1.1, we regard its conductor as q, forming the usual L-function

L(s, χ) :=
∞∑
n=1

χ(n)
ns

=
∏

p prime

(
1 +

χ(p)
ps

+
χ(p2)
p2s

+ · · ·
)

and its completion

Λ(s, χ) :=
( q
π

) s
2

Γ
(
s+ a

2

)
L(s, χ)

(
a :=

{
0 if χ(−1) = 1,

1 if χ(−1) = −1

)
.

Then, the functional equation of any of the characters in Theorem 1.1 assumes
the same form as the functional equation of an L-function attached to a primitive
character.

Theorem 1.4. Let C be as in Theorem 1.1. Then, with the notation as above,
one has

Λ(1 − s, χ) =
iaq1/2

τ(χ, 1)
Λ(s, χ),

for any character χ ∈ C.

We will provide some details of the proof of Theorem 1.4 in Sec. 4, but one can
simply note that the Gauss sum identity (5) also implies that

|Gq(χ, 1)|2 = q, (11)

for any χ ∈ C. The classical proof of the functional equation via Mellin transforms
and theta series is then generally valid.

Remark 1.5. More generally, suppose that

L(s) =
∞∑
n=1

an
ns

is any L-function with known analytic continuation and functional equation, and
consider the twist

L(s, χ) :=
∞∑
n=1

χ(n)an
ns
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by a primitive Dirichlet character. Provided L(s, χ) also satisfies an analytic con-
tinuation and functional equation, and that this may be proved only using property
(5) of the primitive character χ, then the same proof will demonstrate the analytic
continuation and functional equation of the twist L(s, χ) for any χ ∈ C, independent
of the primitivity of χ×.

For some examples of higher rank L-functions as in Remark 1.5, see for
instance [1].

Let us illustrate Theorem 1.1 when q = p, a prime. In this case, the only
classical Dirichlet character which is imprimitive is the trivial character χ0. Let
{χ1, χ2, . . . , χp−2} denote the set of primitive characters modulo p, viewed simply
as functions

χi : (Z/pZ)× → C×.

We extend the definition of each primitive χi to all of Z/pZ by setting χi(0) := 0.
If we further extend the definition of the trivial character modulo p by setting

χ±
0 (0) := ±i

√
p− 1, (12)

then {χ1, χ2, . . . , χp−2, χ
+
0 , χ

−
0 } is the unique set of p characters mod p which satisfy

the conclusion of Theorem 1.1, as will be shown below. In this case,

mχ =

{
2 if χ = χ±

0 ,

1 otherwise.

For similar examples of explicit constructions at levels p2 and p3, see Example 3.14.

2. Notation and Terminology

Any function

χ : Z/qZ → C

which is not identically zero and satisfies (6) will be called q-multiplicative. The
restriction of χ to (Z/qZ)× will be denoted by χ×. Note that if χ is q-multiplicative
then χ× is a group homomorphism,

χ× : (Z/qZ)× → C×.

In particular, |χ(n)| = 1 if (n, q) = 1. Furthermore, we will denote by G×
q (χ, n) the

classical Gauss sum

G×
q (χ, n) :=

∑
m∈(Z/qZ)×

χ(m) exp
(

2πinm
q

)
.

If d is a divisor of q and ψ : Z/dZ → C, we will say that ψ induces χ if χ× =
ψ×◦red, where red(·) is the reduction modulo d map. This is equivalent to requiring
that χ(n) = ψ(n) for all n ∈ Z/qZ for which (n, q) = 1. If χ is q-multiplicative, we
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define the conductor of χ to be the conductor of χ×. Equivalently, the conductor d
is the smallest modulus for which χ can be induced by a d-multiplicative function.

For m ∈ Z/pαZ, we will use the notation m = pνn (0 ≤ ν ≤ α) to mean that ν
is the p-adic valuation of m and p � n. Finally, we define

δS :=

{
1 if S is true,

0 if S is false.

3. Defining the Characters

We will prove Theorem 1.1 by producing a set C = {χ1, χ2, . . . , χq} of functions on
Z/qZ that satisfy (5)–(7), and that when restricted to (Z/qZ)× reproduces every
character of conductor d precisely τ(q/d) times. Along the way we will also prove
Theorem 1.2, characterizing a family of such sets C. We begin by reducing our
consideration to the subset of those functions in C which restrict to a given fixed
character ψ ∈ ((Z/qZ)×)∗.

3.1. Reduction to fibers over a fixed character

Given a set C ∈ Fq and a character ψ : (Z/qZ)× → C×, define

Cψ := {χ ∈ C : χ× = ψ}. (13)

By property (2) of Theorem 1.1, each Cψ contains exactly τ(q/d) functions, where
d is the conductor of ψ.

Proposition 3.1. Let q be a positive integer, d a divisor of q and ψ : (Z/qZ)× →
C× a character of conductor d. There exists a set Cψ of functions χ : Z/qZ → C

with the following properties.

(1) The set Cψ contains exactly τ(q/d) functions, and each χ ∈ Cψ satisfies (6).
(2) For each χ ∈ Cψ, one has χ× = ψ.
(3) The identity (5) holds for all χ ∈ Cψ.
(4) For χ1, χ2 ∈ Cψ, we have

〈χ1, χ2〉q =

{
τ(q/d)ϕ(q) if χ1 = χ2,

0 otherwise.
(14)

If C satisfies the conclusions of Theorem 1.1, then the set Cψ defined by (13)
is immediately seen to satisfy the conclusions of Proposition 3.1; thus Theorem 1.1
implies Proposition 3.1. Conversely, Proposition 3.1 implies Theorem 1.1. Indeed,
define

Fψq := {Subsets Cψ ⊆ CZ/qZ which satisfy the conclusions of Proposition 3.1}.
(15)
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Proposition 3.1 asserts that every Fψq is non-empty, while Theorem 1.1 asserts that
Fq is non-empty. Thus, the following lemma shows that Theorem 1.1 is equivalent
to Proposition 3.1.

Lemma 3.2. Let Fq be defined by (8) and Fψq by (15). There is a bijection

Fq ↔
∏

ψ∈((Z/qZ)×)∗
Fψq .

Proof. The bijection is given by

Fq  C 	→ (Cψ)ψ∈((Z/qZ)×)∗

(where Cψ is as in (13)) and∏
ψ∈((Z/qZ)×)∗

Fψq  (Cψ)ψ∈((Z/qZ)×)∗ 	→
⊔

ψ∈((Z/qZ)×)∗
Cψ .

To see that �ψ∈((Z/qZ)×)∗C
ψ ∈ Fq, write Z/qZ = �d|qd(Z/qZ)× and note that, for

ψ1 �= ψ2 and χ1 ∈ Cψ1 , χ2 ∈ Cψ2 , one has

〈χ1, χ2〉q =
∑
d|q

χ1(d)χ2(d)
ϕ(q/d)
ϕ(q)

∑
m∈(Z/qZ)×

ψ1(m)ψ2(m) = 0.

All other details are readily verified.

We have thus reduced Theorem 1.1 to Proposition 3.1. Furthermore, Lemma 3.2
reduces Theorem 1.2 to the following proposition.

Proposition 3.3. Let

Fψq := {Subsets Cψ ⊆ CZ/qZ which satisfy the conclusions of Proposition 3.1}.
Then there is an injective map∏

p|q
Nψp ≥2

((TNψp +1/SNψp +1) ×ONψp −1(R)) ×
∏
p|q
γψp ≥1

Nψp =1

(TNψp +1/SNψp +1) ↪→ Fψq , (16)

where any empty product on the left-hand side is interpreted as a set with one
element. Furthermore, there exists a set Cψ ∈ Fψq for which Cψ ∈ Fψq .

Remark 3.4. Since TN+1 �= ∅ (for instance ( πj
N+1 ) ∈ TN+1), the right-hand side

of (16) is non-empty, and so Proposition 3.1 follows from Proposition 3.3.

In the next section, we will reduce Proposition 3.3 to the case where q is a prime
power.
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3.2. Reduction to the case of prime power modulus

We now use the Chinese remainder theorem to reduce the proof of Proposition 3.3
to the case where q is a prime power. Fix once and for all a group homomorphism

ψ : (Z/qZ)× → C×

of conductor d, which is understood to be the character occurring in the statement
of Proposition 3.3. For each prime power pα exactly dividing q, let

ιpα : Z/pαZ →
∏
�α‖q

Z/αZ � Z/qZ

be the injective function defined by x 	→ (1, . . . , 1, x, 1, . . . 1), followed by the iso-
morphism of the Chinese remainder theorem. Thus, ιpα(x) = m if and only if m ≡ x

mod pα and m ≡ 1 mod q/pα. Notice that, for any n ∈ Z/qZ,

n =
∏
pα‖q

ιpα(n mod pα). (17)

For any function χ : Z/qZ → C, put χpα := χ ◦ ιpα . It follows from (17) that,
provided χ satisfies (6), one has

∀n ∈ Z/qZ, χ(n) =
∏
pα‖q

χpα(n mod pα), (18)

or in other words, χ =
⊗

pα‖q χp
α . Conversely, if each local character χpα satisfies

χpα(nm) = χpα(n)χpα(m), provided either n ∈ (Z/pαZ)× or m ∈ (Z/pαZ)×,

(19)

then the function χ defined by (18) satisfies (6). Furthermore, the local version of
(5) is

∀n ∈ Z/pαZ, Gq(χpα , n) = χpα(n)Gq(χpα , 1). (20)

For any set C of functions χ : Z/qZ → C, define

Cpα := {χpα : χ ∈ C}.
If pγ is the exact power of p dividing d, then ψpα is the local character of conductor
pγ associated to ψ. Note that

χ× = ψ ⇒ χ×
pα = ψpα .

If Cψ is a set of functions χ : Z/qZ → C, each of which satisfies χ× = ψ, then we
introduce the notation

C
ψpα
pα = (Cψ)pα := {χpα : χ ∈ Cψ}. (21)

It is reasonable to expect the set C
ψpα
pα to satisfy the following local version of

Proposition 3.1.
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Proposition 3.5. Let α and γ be non-negative integers with 0 ≤ γ ≤ α, and let
ψpα : (Z/pαZ)× → C× be a character of conductor pγ . There exists a set C

ψpα
pα of

functions χpα : Z/pαZ → C with the following properties.

(1) The set C
ψpα
pα contains exactly τ(pα−γ) = α − γ + 1 functions, and each χpα ∈

C
ψpα
pα satisfies (19).

(2) For each χpα ∈ C
ψpα
pα , one has χ×

pα = ψpα .
(3) The identity (20) holds for all χpα ∈ C

ψpα
pα .

(4) For χ1, χ2 ∈ C
ψpα
pα , we have

〈χ1, χ2〉pα =

{
τ(pα−γ)ϕ(pα) if χ1 = χ2,

0 otherwise.
(22)

Furthermore, we extend (15) by defining

F
ψpα
pα := {Subsets C

ψpα
pα ⊆ CZ/pαZ which satisfy the conclusions of Proposition 3.5}.

(23)

The following is the local version of Proposition 3.3.

Proposition 3.6. Let 0 ≤ γ ≤ α be non-negative integers and ψpα : (Z/pαZ)× →
C× a character of conductor pγ . Let F

ψpα
pα be defined by (23). Then there is a one-

to-one correspondence

F
ψpα
pα ↔


(Tα−γ+1/Sα−γ+1) ×Oα−γ−1(R) if α− γ ≥ 2,

Tα−γ+1/Sα−γ+1 if γ ≥ 1 and α− γ = 1,

{1} otherwise.

(24)

Furthermore, there exists a set C
ψpα
pα ∈ F

ψpα
pα for which C

ψpα
pα ∈ F

ψpα
pα .

We will show (see Lemma 3.8) that Cψ satisfies the conclusions of Proposi-
tion 3.1, provided each C

ψpα
pα satisfies the conclusions of Proposition 3.5. However,

our current proof does not show that the converse holds. We emphasize this with
the following question.

Question 3.7. Defining C
ψpα
pα is as in (21), is the implication

Cψ ∈ Fψq ⇒ ∀ pα ‖ q,Cψpαpα ∈ F
ψpα
pα (25)

necessarily true? (A proof of (25) would imply that the injection (10) of Theorem 1.2
is in fact a bijection.)

As before, Proposition 3.5 follows from Proposition 3.6, since the right-hand side
of (24) is non-empty. The following lemma shows that Proposition 3.3 follows from
Proposition 3.6.

Lemma 3.8. There is an injection of sets∏
pα‖q

F
ψpα
pα ↪→ Fψq .
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Proof. The injection is given by

∏
pα‖q

F
ψpα
pα  (Cpα)pα‖q 	→

⊗
pα‖q

χpα : (χpα) ∈
∏
pα‖q

Cpα

.
Equation (18) shows that if χpα is pα-multiplicative, then χ :=

⊗
pα‖q χp

α is q-

multiplicative. Also, since

〈χ1, χ2〉q =
∏
pα‖q

〈(χ1)pα , (χ2)pα〉pα

holds for any q-multiplicative χ1 and χ2, one deduces (14) from (22). Finally, using
the identity

Gq(χ, n) =
∏
pα‖q

χpα(q/pα)Gpα(χpα , n),

which holds for any q-multiplicative χ, one deduces (5) from (20). This completes
the proof of Lemma 3.8.

The remainder of the paper is devoted to proving Proposition 3.6, from which
Theorem 1.2, and hence Theorem 1.1, will follow.

3.3. The construction for a prime power modulus

For brevity, the character ψpα : (Z/pαZ)× → C× of conductor pγ will henceforth be
denoted simply by ψ, and the corresponding set C

ψpα
pα will likewise be abbreviated

by Cψ. Furthermore, consistently with (9), we define

Nψ := α− γ.

We will produce a set Cψ of τ(pα/pγ) = Nψ + 1 functions χ : Z/pαZ → C so that

∀χ ∈ Cψ, χ is pα-multiplicative and χ× = ψ, (26)

and so that every χ ∈ Cψ satisfies (20) and any pair χ1, χ2 ∈ Cψ satisfies (22).
Furthermore, we will parametrize all such sets Cψ.

Note that, if n ∈ (Z/pαZ)×, then χ(pνn) = χ(pν)χ(n), and so extending ψ

to a function χ : Z/pαZ → C satisfying (19) amounts to specifying the complex
numbers χ(pβ) for 0 ≤ β ≤ α. The following lemma shows that we only need to
concern ourselves with β in the range 0 ≤ β ≤ α− γ.

Lemma 3.9. Suppose that χ : Z/pαZ → C is any pα-multiplicative function of
conductor pγ. Then χ(pβ) = 0 for each β > α− γ.

Proof. Suppose that β > α− γ. Since γ > α− β, there is an element

n ∈ 1 + pα−β
Z/pαZ

pβZ/pαZ
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for which χ×(n) �= 1. Then,

χ(pβ) = χ(pβn) = χ(pβ)χ(n),

which proves that χ(pβ) = 0.

The next lemma computes the inner product 〈χ1, χ2〉pα in terms of the complex
numbers χ(pν).

Lemma 3.10. Let χ1, χ2 : Z/pαZ → C be two functions satisfying (19). Then
one has

〈χ1, χ2〉pα =


α∑
ν=0

ϕ(pα−ν)χ1(pν)χ2(p
ν) if χ×

1 = χ×
2 ,

0 if χ×
1 �= χ×

2 .

Proof. Let pγi be the conductor of χ×
i and put γ := max{γ1, γ2}. By Lemma 3.9,

we have ∑
m∈Z/pαZ

χ1(m)χ2(m) =
α−γ∑
ν=0

χ1(pν)χ2(p
ν)

∑
n∈(Z/pα−νZ)×

χ×
1 (n)χ×

2 (n),

which proves the lemma.

The following proposition transforms the conditions (20) and (22) into proper-
ties of the various complex numbers χ(pν). It will be convenient to renormalize as
follows. Let S denote the one-to-one correspondence

S : {χ : Z/pαZ → C satisfying (19) and χ× = ψ} →
{

1√
Nψ + 1

}
× CNψ

defined by

S(χ)

:=



1√
Nψ + 1

(
χ(p0)
p0/2

,
χ(p1)
p1/2

, . . . ,
χ(pNψ)
pNψ/2

)
if ψ is non-trivial

1√
Nψ + 1

(
χ(p0)
p0/2

,
χ(p1) − χ(p0)

p1/2
, . . . ,

χ(pNψ) − χ(pNψ−1)
pNψ/2

)
if ψ is trivial.

(27)

Furthermore, for each χ ∈ Cψ, define xχν to be the νth coordinate of S(χ), i.e. put

S(χ) =: (xχ0 , x
χ
1 , x

χ
2 . . . x

χ
Nψ

) ∈
{

1√
Nψ + 1

}
× CNψ .
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Finally, define the matrix Tψ ∈M(Nψ+1)×(Nψ+1)(R) by specifying its (j, k)th coor-
dinate Tψ(j, k) as followsb:

Tψ(j, k) :=


δj=k if ψ is non-trivial,

p
−|j−k|

2

(
1 − 1

p

)−1

if ψ is trivial.

The matrix Tψ is checked in either case to be positive-definite (see the proof of
Proposition 3.11 below for the case in which ψ is trivial), and so it determines an
inner product

〈x, y〉ψ := xtTψy (x, y ∈ CNψ+1).

Proposition 3.11. Let ψ : (Z/pαZ)× → C× be a multiplicative character and let
Cψ be any set of Nψ + 1 functions satisfying (26). Then,

Cψ satisfies (22) ⇔ ∀ v1, v2 ∈ S(Cψ), 〈v1, v2〉ψ = δv1=v2 .

Furthermore, for each χ ∈ Cψ,

χsatisfies (20) ⇔ ∀ ν with 0 ≤ ν ≤ Nψ, x
χ
νx

χ
Nψ

= xχNψ−νx
χ
0 .

Proof. The first statement follows by using (27) and some linear algebra to trans-
late Lemma 3.10 into a statement about the vectors S(χ1) and S(χ2), although
the case where ψ is trivial is somewhat involved. It makes use of the fact that Tψ is
a Gram matrix, i.e. one can write Tψ = QtψQψ, where Q−1

ψ ∈ M(Nψ+1)×(Nψ+1)(R)
is defined to have (j, k)th coordinate given by

Q−1
ψ (j, k) :=



1 if j = k < Nψ,(
1 − 1

p

)1/2

if j = k = Nψ,

−p−1/2 if j = k + 1,

0 otherwise.

(28)

The second statement is deduced from the following lemma, whose proof is a cal-
culation, using repeatedly that the sum of the values of a non-trivial character on
a finite group is zero.

Lemma 3.12. Let ψ : (Z/pαZ)× → C× be a multiplicative character of conductor
pγ and let Cψ be any set of functions χ : Z/pαZ → C for which (26) holds. Then,
for any m = pνn ∈ Z/pαZ (where p � n), one has

Gpα(χ, pνn) =


pνχ(pNψ−ν) · δν≤Nψ · G×

pγ (χ, n) if γ > 0,

−pνχ(pα−1−ν) · δν≤α−1 +
α∑

µ=α−ν
ϕ(pα−µ)χ(pµ) if γ = 0.

The rest of the details of the proof of Proposition 3.11 are left to the reader.

bWe will assume that all matrix index ranges begin with 0.
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Corollary 3.13. Let ψ and Cψ be as in the hypotheses of Proposition 3.11. Let Xψ

denote the (Nψ + 1) × (Nψ + 1) matrix whose columns are the vectors in S(Cψ),
and let Vψ denote the matrix of the same dimensions given by

Vψ(j, k) := δj+k=Nψ .

Then Cψ satisfies (22) if and only if

Xt
ψTψXψ = I. (29)

Moreover, (20) is satisfied for all χ ∈ Cψ if and only if there is a diagonal matrix
Dψ so that

VψXψ = XψDψ. (30)

From this result it follows that in order to construct the desired set Cψ it suffices
to find a solution Xψ to the matrix equations (29) and (30) which has the additional
property that

Xψ(0, k) =
1√

Nψ + 1
(31)

for k = 0, 1, . . . , Nψ. When ψ is non-trivial this is straightforward. Since Tψ is simply
the identity in this case, an appropriately scaled version of the character table for
Z/(Nψ + 1)Z provides a solution. Specifically, the matrix defined by

Xψ(j, k) =
1√

Nψ + 1
exp

(
2πijk
Nψ + 1

)
(32)

is readily seen to satisfy (29)–(31). We will see that this is not the only solution,
however.

When ψ is trivial matters are decidedly more complicated, as the following
examples illustrate.

Example 3.14. We now exhibit three extensions to all of Z/p2Z of the trivial
character on (Z/p2Z)×. In this case, Nψ + 1 = 3 and we consider the 3 × 3 matrix
X3 defined by

X3 :=
1√
3

 1 1 1

−2p−1/2 + r (p−1/2 + r)ζ3 (p−1/2 + r)ζ2
3

1 ζ2
3 ζ3

,
where r :=

√
1 − 1

p and ζ3 ∈ C denotes a primitive third root of unity. The matrix

X3 seen to satisfy Xt
3T3X3 = I, where

T3 =
(

1 − 1
p

)−1

 1 p−1/2 p−1

p−1/2 1 p−1/2

p−1 p−1/2 1

.
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Furthermore, one verifies that (30) holds, i.e. we have that V3X3 = X3D3, where

V3 =

0 0 1

0 1 0

1 0 0

 and D3 =

1 0 0

0 ζ3 0

0 0 ζ2
3

.
Thus, the three characters χ defined via (27) using the columns of X3 fit into a
family C of extensions which satisfy the conclusions of Theorem 1.1 with q = p2.

Turning to level q = p3, we now construct four extensions χ to all of Z/p3Z of
the trivial character on (Z/p3Z)×, again via (27) by the columns of the matrix

X4 :=
1√
4



1 1 1 1

−2p−
1
2 + r1

(−1 + i)(r1 − ir2)
2

2p−
1
2 − r2

(−1 − i)(r1 + ir2)
2

−2p−
1
2 + r1

(−1 + i)(r1 + ir2)
2

−2p−
1
2 + r2

(−1 − i)(r1 − ir2)
2

1 −i −1 i


where rj = p−1/2 +

√
1 + (−1)j√

p for j = 1, 2. One verifies that Xt
4T4X4 = I, where

T4 =
(

1 − 1
p

)−1


1 p−1/2 p−1 p−3/2

p−1/2 1 p−1/2 p−1

p−1 p−1/2 1 p−1/2

p−3/2 p−1 p−1/2 1

.
Furthermore, one has V4X4 = X4D4, where

V4 =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 and D4 =


1 0 0 0
0 i 0 0
0 0 −1 0
0 0 0 −i

.
Note that, as p→ ∞, the matrix

√
3X3 (respectively

√
4X4) limits to the character

table for the group Z/3Z (respectively for the group Z/4Z), while T limits to the
identity matrix.

We now return to the proof of Proposition 3.6. As we will now be focusing on the
trivial character exclusively, it will cause no confusion to drop the subscript ψ from
our notation. If Q = Qψ is defined by (28) and if we let Y = QX and W = QVQ−1,
then X satisfies (29)–(31) if and only if Y satisfies

Y tY = I, (33)

Y −1WY = D is diagonal, (34)

Y (0, k) =
1√

N + 1
, ∀ k. (35)
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Observe that if we multiply both sides of WY = YD by W on the left and use
the fact that W 2 = I, we are led to

Y = WYD = Y DD,

from which it follows that (34) can only occur if the diagonal entries of D have
complex modulus 1. If we let D1/2 denote any diagonal square root of D and set
Z = Y D1/2, then Y satisfies (33)–(35) if and only if Z satisfies

ZtZ = I, (36)

Z−1WZ = I, (37)

|Z(0, k)| =
1√

N + 1
, ∀ k. (38)

In this case, the jth diagonal entry of D1/2 is given by Z(0, j)
√
N + 1. Note that

Z and X are related directly by X = Q−1Z(D1/2)−1.
We will now completely determine all the matrices Z ∈ M(N+1)×(N+1)(C) that

simultaneously satisfy Eqs. (36)–(38). Set

M1 =
⌈
N + 1

2

⌉
,

M2 =
⌊
N + 1

2

⌋
.

Note that, for l ∈ {1, 2},
Ml is the dimension of the (−1)l−1-eigenspace of V , (39)

and in particular, M1 +M2 = N + 1. Let In denote the n× n identity matrix and
define U1 ∈MM1×M1(R) and U2 ∈MM2×M2(R) to be the block-diagonal matrices

U1 =



(
IM1−1

(1 − p−1/2)1/2

)
if N is odd,IM1−2

1 −p−1/2

0
√

2(1 − p−1)1/2

 if N is even

and

U2 =


(
IM2−1

(1 + p−1/2)1/2

)
if N is odd,

IM2 if N is even.

We will use U1 and U2 to characterize matrices Z ∈M(N+1)×(N+1)(C) which satisfy
(36) and (37) (see Proposition 3.17), but first we establish two preparatory lemmas.

Lemma 3.15. For l ∈ {1, 2},

I + (−1)l−1W =

(
U tl Ul ∗
∗ ∗

)
.
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Proof. From the definition of Q−1 we can write

Q−1 = (I − p−1/2L)∆,

where L is the nilpotent matrix whose only non-zero entries are ones along the lower
main subdiagonal, and ∆ is diagonal. Therefore

Q = ∆−1
∞∑
λ=0

p−λ/2Lλ

and since W = QVQ−1, we find that

W = ∆−1

(
V +

( ∞∑
λ=0

p−(λ+1)/2Lλ

)
(LV − V L)

)
∆.

As only the λ = 0, 1 terms contribute to the upper-left M1 ×M1 block of W , the
result follows by explicit computation.

Lemma 3.16. For l ∈ {1, 2} let El denote the (−1)l−1-eigenspace of W . Then

El = Col(I + (−1)l−1W ).

In particular, the first Ml columns of I + (−1)l−1W form a basis of El.

Proof. Since W 2 = I, multiplication by I + (−1)l−1W provides a linear transfor-
mation from CN+1 onto El, which proves the first equality. Since V and W are
similar, and the (−1)l−1-eigenspace of V has dimension Ml, dimEl = Ml. The sec-
ond statement now follows from Lemma 3.15 and the fact that detU tl Ul �= 0.

Proposition 3.17. A matrix Z ∈M(N+1)×(N+1)(C) satisfies (36) and (37) if and
only if

Z = (I +W )

(
U−1

1 A

0

)
+ i(I −W )

(
U−1

2 B

0

)
, (40)

where A ∈ MM1×(N+1)(R), B ∈ MM2×(N+1)(R), 0 represents a zero matrix of suf-
ficient size to make the indicated matrix square, and

√
2
(
A

B

)
∈ ON+1(R). (41)

The matrices A and B are unique. Furthermore, if N ≥ 2 then

Z(0, k) = A(0, k) + iB(0, k) (42)

for k = 0, 1, . . . , N .

Proof. Write Z = Â + iB̂, with Â, B̂ ∈ M(N+1)×(N+1)(R). Then Z satisfies (37)
if and only if WÂ − iWB̂ = Â + iB̂. Since W is real, this shows that the columns
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of Â belong to the 1-eigenspace of W and that the columns of B̂ belong to W ’s
−1-eigenspace. By Lemma 3.16,

Â = (I +W )

(
Ã

0

)
and

B̂ = (I −W )

(
B̃

0

)

for a unique pair of matrices Ã ∈MM1×(N+1)(R) and B̃ ∈MM2×(N+1)(R). Since W
is symmetric (this is a consequence of the fact that T and V commute) and W 2 = 1,
Lemma 3.15 implies that

ÂtÂ = 2ÃtU t1U1Ã

and

B̂tB̂ = 2B̃tU t2U2B̃,

and that ÂtB̂ = B̂tÂ = 0. Thus, Z̄tZ = 2(ÃtU t1U1Ã+B̃tU t2U2B̃). Upon setting A :=
U1Ã and B := U2B̃, this simply becomes Z̄tZ = 2(AtA+BtB). The equivalence of
(36) and (37) with (40) and (41) now follows. Since Â and B̂ are uniquely defined
by Z, and these in turn uniquely define Ã and B̃, A and B must be unique as well.

If Z has the form given by (40), then Lemma 3.15 implies that

Z =

(
U t1A

∗

)
+ i

(
U t2B

∗

)
.

Since the first column of Uj is (1, 0, . . . , 0)t when N ≥ 2, (42) holds. This completes
the proof.

As an application of Proposition 3.17, consider the case N = α = 1. Write
A =

(
a0 a1

)
and B =

(
b0 b1

)
. Then (41) becomes the three equations

ajak + bjbk =
δj=k

2
, 0 ≤ j ≤ k ≤ 1. (43)

Instead of (42), (40) now yields

Z(0, j) = (1 − p−1/2)1/2aj + i(1 + p−1/2)1/2bj

so that (38) holds if and only if

(1 − p−1/2)a2
j + (1 + p−1/2)b2j =

1
2

(44)

for j = 0, 1. When j = k, (43) and (44) imply that

a2
j = b2j =

1
4
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so that aj , bj ∈ {±1/2}. There are exactly eight ways to choose the signs so that
the final equation a1a2 + b1b2 = 0 is also satisfied. After some straightforward,
but tedious, computations we arrive at the conclusion that, up to the order of its
columns, the only matrix that satisfies (29)–(31) in the case that ψ is trivial and
N = 1 is

X =
1√
2

(
1 1

−p−1/2 + i(1 − p−1)1/2 −p−1/2 − i(1 − p−1)1/2

)
. (45)

Inverting (27), we recover the two extensions (12) of the trivial character given in
Sec. 1.

Returning now to the general case, let us make the definition

T̃N :=

(θj) ∈ (R/2πZ)N

∣∣∣∣∣∣
N−1∑
j=0

e2θji = 0

.
Suppose N ≥ 2. Given θ = (θj) ∈ T̃N+1, define a(θ), b(θ) ∈ RN+1 by

a(θ) + ib(θ) :=
1√

N + 1
(eθ0i, eθ1i, . . . , eθN i)

and let C(θ) = {c1(θ), c2(θ), . . . , cN−1(θ)} be any (fixed) real orthonormal basis for
SpanR{a(θ), b(θ)}⊥ (note that for any θ ∈ T̃N+1, a(θ) and b(θ) must be R-linearly
independent). For R ∈ ON−1(R) define dj(θ,R) through the equation

d1(θ,R)

d2(θ,R)
...

dN−1(θ,R)

 := R


c1(θ)

c2(θ)
...

cN−1(θ)

.
Finally, define A(θ,R) ∈MM1×(N+1)(R) and B(θ,R) ∈MM2×(N+1)(R) by

A(θ,R) :=
1√
2


√

2a(θ)

d1(θ,R)
...

dM1−1(θ,R)

, B(θ,R) :=
1√
2


√

2b(θ)

dM1(θ,R)
...

dN−1(θ,R)

.
Proposition 3.18. Let N ≥ 2. Given (θ,R) ∈ T̃N+1 ×ON−1(R), let

Z(θ,R) := (I +W )

(
U−1

1 A(θ,R)

0

)
+ i(I −W )

(
U−1

2 B(θ,R)

0

)
,

where 0 represents a zero matrix of sufficient size to make the indicated matrix
square. Then Z = Z(θ,R) satisfies (36)–(38). Furthermore, Z provides a bijection
between T̃N+1 ×ON−1(R) and the set of matrices which satisfy (36)–(38).

Proof. Let Z satisfy (36)–(38). Write Z as in (40). According to (41), the rows
of A and B are orthogonal and each has norm 1/

√
2. Let the first row of A be
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a = (a0, a1, . . . , aN ) and let the first row of B be b = (b0, b1, . . . , bN). The equalities
(38) and (42) occur if and only if

aj + ibj =
eiθj√
N + 1

(46)

for some unique tuple (θ0, θ1, . . . , θN ) ∈ (R/2πZ)N+1. We then have

1
N + 1

N∑
j=0

e2iθj =
N∑
j=0

(aj + ibj)2 = |a|2 − |b|2 + 2i〈a, b〉 = 0. (47)

This shows that θ = (θ0, θ1, . . . , θN ) ∈ T̃N+1 and that a = a(θ), b = b(θ). Since
the remaining rows of

√
2A and

√
2B give an orthonormal basis for SpanR{a, b}⊥,

and any two such bases are related by a unique element of ON−1(R), we find that
we can write Z = Z(θ,R) for a unique pair (θ,R) ∈ T̃N+1 × ON−1(R). A reversal
of this reasoning ensures that any matrix of the form Z(θ,R) does indeed satisfy
(36)–(38), completing the proof.

Proposition 3.18 proves the bijection (24) in the case where ψ = ψpα is the
trivial character and α − γ ≥ 2. (The passage from T̃N+1 to TN+1 is accounted
for by the ambiguity in the choice of the square roots in D1/2, and a matrix Xψ

corresponds via its columns to an ordered set of characters, so we must quotient by
the action of SN+1.) A moment’s thought shows that if we let p→ ∞ in Proposition
3.18 (recall that the matrices W , U1 and U2 are functions of p), it actually does
the same for non-trivial characters ψ as well, if α − γ ≥ 2. This follows from the
fact that the matrix Tψ in the non-trivial case is the limiting value of the trivial
case. The case α − γ = α = 1 has already been dealt with; see (43) and (44). If
α − γ = 1 and α > 1, then we take the limit as p → ∞ in (44), and find that it
becomes unnecessary, since it repeats particular cases of (43). As before, by (40),
we find that (46) holds, which by (47) implies that (θ0, θ1) ∈ T̃2. Finally, in the
remaining case α = γ, Lemma 3.9 implies that we must have

gcd(n, pα) > 1 ⇒ χ(n) = 0,

and so the extension χ is unique. We have verified (24).
To finish the proof of Proposition 3.6, it only remains to show that there exists a

set C
ψpα
pα ∈ F

ψpα
pα for which C

ψpα
pα ∈ F

ψpα
pα , which we now do, by using Proposition 3.18

to impose additional restrictions on our character extensions. Given the limiting
behavior of the matrix Tψ just mentioned, it is natural to look for matrices Xψ

which enjoy a similar relationship. Equation (32) gives one choice for the extension
matrix of a non-trivial character, and it seems natural to ask whether one can
arrange to have the matrices Xψ (for ψ trivial) converge to it as p→ ∞. The next
result shows that this is indeed case.

Proposition 3.19. Fix N ≥ 2 and let CN ∈M(N+1)×(N+1)(C) be given by

CN (j, k) =
1√

N + 1
exp

(
2πijk
N + 1

)
.
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For every character ψ with Nψ = N, it is possible to choose Xψ satisfying (29)–(31)
so that

lim
p→∞Xψ = CN .

Proof. According to (32) it suffices to assume that ψ is trivial. Moreover, (45)
shows that we may assume N ≥ 2. Define A ∈ MM1×(N+1)(R) and B ∈
MM2×(N+1)(R) through the equations

A(j, k) + iB(j, k) :=
1√

N + 1
exp

(
iπ(2j + 1)k
N + 1

)
(48)

for 0 ≤ j ≤M2 − 1 and, when M1 > M2,

A(M1 − 1, k) :=
(−1)k√
2(N + 1)

. (49)

We claim first that
√

2
(
A

B

)
∈ ON+1(R).

To see this, let the jth rows of A and B be denoted by aj and bj , respectively. By
expanding the inner products 〈aj1 + ibj1 , aj2 ± ibj2〉 first using linearity, and then
explicitly using (48) and (49), one finds that the first M2 − 1 rows of A and B are
mutually orthogonal with norms equal to 1/

√
2. When M1 = M2 this establishes

our claim. When M1 > M2 similar computations can be carried out for the final
row aM1−1 of A, making use of the fact that N is even in this case.

Now construct Z using A and B according to (40) and let D1/2 be the diag-
onal matrix whose diagonal entries are exp(iπk/(N + 1)). Proposition 3.17 then
guarantees that Z satisfies (36)–(38), and hence that X = Q−1Z(D1/2)−1 satisfies
(29)–(31). With these choices we have

lim
p→∞X = lim

p→∞Q−1Z(D1/2)−1

=
(

lim
p→∞Z

)
(D1/2)−1

=

(I + V )

(
lim
p→∞U1

)−1

A

0



+ i(I − V )

( lim
p→∞U2

)−1

B

0

 (D1/2)−1.

The reader can verify that this last expression is exactly CN .

We now deduce the following lemma, which will complete the proof of Proposi-
tion 3.6.

Lemma 3.20. It is possible to choose C
ψpα
pα ∈ F

ψpα
pα so that C

ψpα
pα ∈ F

ψpα
pα .
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Proof. We begin by observing that since the matrices Xψ provided by the proof of
Proposition 3.19 depend only on the conductor of ψ, one has Xψ = Xψ. We claim
furthermore that the columns of Xψ occur in complex conjugate pairs.

When ψ is non-trivial this is an immediate consequence of (32). If ψ is trivial,
construct Z as in the proof of Proposition 3.19. Since Q has only real entries, left
multiplication by Q preserves pairs of complex conjugate columns. Therefore X will
have conjugate-paired columns if and only if Z(D1/2)−1 does. But the definition of
A and B implies that column 0 of Z(D1/2)−1 has only real entries, and that for
k ≥ 1 the complex conjugate of column k is column N − k + 1.

It now follows that C
ψpα
pα ∈ F

ψpα
pα , which completes the proof.

4. The Functional Equation of the Attached L-Function

In this section we provide a proof of Theorem 1.4. For the convenience of the reader,
we will state explicitly various facts, some of which have already appeared earlier
(see Lemma 4.1).

Let q be a positive integer, let C be a set of functions satisfying the conclusion
of Theorem 1, and let χ ∈ C. If d is the conductor of χ× then there is a unique
primitive character ψ ∈ ((Z/dZ)×)∗ so that χ ∈ Cψ. Given a prime p and an
arithmetic function f , we define the associated Euler factor to be the sum

Ep(s, f) =
∞∑
ν=0

f(pν)
ps

.

If f is multiplicative then (formally at least)

L(s, f) :=
∞∑
n=1

f(n)
ns

=
∏
p

Ep(s, f).

Since it is primitive, the extension of ψ to all of Z/dZ is zero outside of (Z/dZ)×

and L(s, ψ) is the classically defined Dirichlet L-function associated to ψ. Since ψ
induces χ,

L(s, χ) =

∏
p|q

Ep(s, χ)
Ep(s, ψ)

L(s, ψ).

Since L(s, ψ) is known to possess a meromorphic continuation (analytic when ψ is
non-trivial) to all of C, this equation furnishes a continuation of L(s, χ).

We will prove the functional equation of L(s, χ) by first proving local functional
equations for the factors Ep(s, χ)/Ep(s, ψ) for p | q and then utilizing the well-known
functional equation for L(s, ψ). This is primarily for the interested reader and can
be avoided altogether. Indeed (as mentioned in Sec. 1), because the Gauss sum
identities (5) and (11) hold independent of primitivity, the classical proof of the
functional equation via the Mellin transform and theta series is now generally valid.
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Beginning with a factorization q = q1q2 with (q1, q2) = 1, let

ιq1 : Z/q1Z → Z/q1Z × Z/q2Z � Z/qZ

be the injective function defined by x 	→ (x, 1), followed by the isomorphism of the
Chinese remainder theorem. Explicitly, ιq1(x) = y where y ≡ x (mod q1) and y ≡ 1
(mod q2). Notice that, for any n ∈ Z/qZ,

n = ιq1(n mod q1)ιq2 (n mod q2). (50)

For any function χ : Z/qZ → C, put χq1 := χ◦ ιq1 . The following lemma gives some
of the salient properties of χq1 . Its proof is straightforward and is left to the reader.

Lemma 4.1. Let q be a positive integer, χ : Z/qZ → C a function, and suppose
q = q1q2 with (q1, q2) = 1.

(i) χ is q-multiplicative (respectively, completely multiplicative) if and only if
χ(n) = χq1(n)χq2(n) for all n ∈ Z and χqi is qi-multiplicative (respectively,
completely multiplicative) for i = 1, 2.

(ii) If q1 = q3q4 with (q3, q4) = 1 then (χq1)q3 = χq3 .
(iii) Suppose χ is q-multiplicative, d | q and ψ : Z/dZ → C is d-multiplicative. Then

ψ induces χ if and only if ψ(d,qi) induces χqi for i = 1, 2.
(iv) If χ is q-multiplicative then d is the conductor of χ if and only if (qi, d) is the

conductor of χqi for i = 1, 2.
(v) If χ is q-multiplicative then

Gq1(χq1 , n)Gq2(χq2 , n) =
Gq(χ, n)

χq1(q2)χq2 (q1)
.

In particular, if χqi satisfies (5) (respectively, (11)) with q = qi and χ = χq1
for i = 1, 2 then χ satisfies (5) (respectively, (11)).

(vi) If ψ : Z/qZ → C is a function and both χ and ψ are q-multiplicative then

〈χq1 , ψq1〉〈χq2 , ψq2〉 = 〈χ, ψ〉.
We will now use Lemma 4.1 to prove the following lemma, which gives explicitly

the L-function of χ ∈ Cψ.

Lemma 4.2. Let p | q. If pα ‖ q and pγ ‖ d then for Re(s) > 0

Ep(s, χ)
Ep(s, ψ)

=
√
α− γ + 1

α−γ∑
ν=0

χq/pα(p)νxχpαν pν/2

pνs
.

Proof. If γ > 0 then Ep(s, ψ) = 1 and the conclusion follows immediately from
part (i) of Lemma 4.1, Lemma 3.9, definition (27) and the fact that χq/pα(pν) =
χq/pα(p)ν . When γ = 0 we have χpα(pα) = χpα(pα+k) for any natural k so that

Ep(s, χ) =
α−1∑
ν=0

χq/pα(p)νχpα(pν)
pνs

+ χpα(pα)
∞∑
ν=α

χq/pα(p)ν

pνs
.
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Since |χq/pα(p)| = 1, the series on the right is geometric and so

Ep(s, χ) =
α−1∑
ν=0

χq/pα(p)νχpα(pν)
pνs

+
χq/pα(p)αχpα(pα)

pαs

(
1 − χq/pα(p)

ps

)−1

=
(

1 − χq/pα(p)
ps

)−1
(

1 +
α∑
ν=1

χq/pα(p)ν
(
χpα(pν) − χpα(pν−1)

)
pνs

)
.

Since χq/pα(p) = ψ(p), definition (27) shows that the conclusion holds in this case
as well.

Lemma 4.3. Let p | q. If pα ‖ q and pγ ‖ d then for 0 < Re(s) < 1

Ep(1 − s, χ)
Ep(1 − s, ψ)

= χq/pα(p)α−γp(α−γ)(s− 1
2 )
(
x
χpα
α−γ
x
χpα
0

)
Ep(s, χ)
Ep(s, ψ)

.

Proof. This is a consequence of Lemma 4.2, the second part of Proposition 3.11
and the fact that xχpαν = x

χpα
ν .

We remark that although Corollary 3.20 shows that we may construct C so
that it is closed under complex conjugation, this hypothesis is not necessary in
Lemma 4.3. That is, whether or not χ ∈ Cψ, χ provides an extension of ψ and the
lemma holds.

Proof of Theorem 1.4. The completed L-functions of χ and ψ related through
the equation

Λ(s, χ) =
( q
d

) s
2

∏
p|q

Ep(s, χ)
Ep(s, ψ)

Λ(s, ψ).

Applying the functional equation for Λ(s, ψ) and Lemma 4.3 this yields

Λ(1 − s, χ) =
iad1/2

Gd(ψ, 1)

∏
p|q

χq/pα(p)α−γ
(
x
χpα
α−γ
x
χpα
0

)Λ(s, χ),

where for each p | q we assume that pα ‖ q and pγ ‖ d. Equation (11) and Lemma 4.1
give

d1/2

Gd(ψ, 1)
=

q

d1/2Gq(χ, 1)

(Gd(ψ, 1)
Gq(χ, 1)

)

=
q

d1/2Gq(χ, 1)

∏
p|q

ψpγ (d/pγ)Gpγ (ψpγ , 1)
χpα(q/pα)Gpα(χpα , 1)

.

Definition (27) and Lemma 3.12 imply that the product on the right is equal to(
d

q

) 1
2 ∏
p|q

ψpγ (d/pγ)χq/pα(p)α−γ

χpα(q/pα)
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which proves the functional equation up to the factor∏
p|q

ψpγ (d/pγ)χq/pα(p)α−γ

χpα(q/pα)
=
∏
p|q

ψpγ (d/pγ)χq/pα (pα)
ψd/pγ (pγ)χpα(q/pα)

.

Lemma 4.1 can be used to show that this product is exactly 1, finishing the
proof.

5. Concluding Remarks

There are many natural questions about this work which remain to be addressed.
We will end by mentioning some of them.

5.1. Characters on more general rings

One may replace Z with any ring R with the property that, for each ideal I ⊆ R,
the quotient ring R/I is finite. The notion of primitivity of multiplicative characters
is also present in this context, and it would be natural to extend our ideas to this
more general setting.

5.2. Higher rank groups

The present paper was initially motivated by the following question: When should
an irreducible representation

π : GL2(Z/qZ) → GLn(C)

be regarded as “primitive”? A study of Gauss sums attached to such π (with Z/qZ

replaced by a finite field) has been carried out in [5] (see also [6]), but its connection
with primitivity does not seem to have been addressed in the literature.

More generally, one may replace GL2 with any group scheme G, and ask for
the appropriate definition of primitivity of π. In these contexts, analogues of
Theorems 1.1 and 1.2 should also hold, and we plan to explore this in future work.

5.3. L-functions attached to extensions χ

The L-functions L(s, χ) attached to our extensions χ do not in general belong to
the Selberg class, but it appears that, for some choices of parameters, they do
continue to satisfy the Generalized Riemann Hypothesis. In addition to (5)–(7),
one might impose additional hypotheses on the extensions χ (for instance that
L(s, χ) satisfy GRH, have only simple zeroes, and/or possess appropriate p-adic
interpolation properties), in hopes of arriving at a unique set C of extensions.

5.4. Averages over χ ∈ C

It appears that the families Fq of sets C of extensions may shed some light on certain
Euler factors appearing in previous work. For example, fix a quadratic number field
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K and an order O ⊆ OK of conductor f . The zeta function ζO(s) attached to the
order O is defined by

ζO(s) :=
∑
A⊆O

1
N(A)s

,

where the sum is over all proper ideals of O. As shown in [8], there is a factorization

ζO(s) = ζK(s) ·
∏
p|f

εf,p(s), (51)

where ζK(s) is the Dedekind zeta function attached to K and εf,p is a polynomial
in p−s and χK(p). The local factors εf,p(s) are shown in [4] to satisfy a Riemann
Hypothesis, and they seem to be connected to our family Fq. Indeed, consider the
factorization

ζK(s) = ζ(s) · L(s, χK) = L(s, χ0) · L(s, χK)

of ζK(s) (where χK is the Kronecker symbol attached to K), and view the Rie-
mann zeta function ζ(s) as the L-function attached to the trivial character χ0. For
simplicity, assume that f is coprime with the conductor nK of K. If one extends
the characters χ0 and χK to level f · nK , using characters from sets C from The-
orem 1.1, and averages appropriately over Fq, then in certain cases one recovers
the factorization on the right-hand side of (51). We will continue to explore this
connection in future work.
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