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1. Determine if the following series are absolutely convergent, conditionally convergent, or
divergent, and indicate which test(s) you used to arrive at your conclusion. If you use one of
the comparison tests, be sure to write down the series to which you are making a comparison.
Other than this, you do not need to show any work. An example is shown below.

Ex.
∞∑

n=1

1

n3 + 2
is: absolutely convergent

by the: comparison test, with
∑∞

n=1
1
n3 .

a.
∞∑

n=1

n2 + 2

2n4 − 5n2 + 1
is:

by the:

.

b.
∞∑

n=1

(−1)n nn

3n n!
is:

by the:

.

c.
∞∑

n=3

(−1)n ln n

n− 2
is:

by the:

.



d.
∞∑

n=2

(−1)n+1

n(ln n)2
is:

by the:

.

e.
∞∑

n=1

(
1

5

)−1/n

is:

by the:

.

f.
∞∑

n=1

cos(2n) arctan(3n)

4n2 + 5
is:

by the:

.

g.
∞∑

n=2

3n

1 + 2n
is:

by the:

.



2. Suppose the nth partial sum of the series
∞∑

n=1

an is given by sn =
2n− 1

2n + 1
.

a. Find a formula for an.

b. Find the exact value of
∞∑

n=1

an.

3. If the power series
∞∑

n=0

cn(x + 1)n converges when x = −4 and diverges when x = 4,

determine if the following series converge or diverge.

a.
∞∑

n=0

(−1)ncn6n

b.
∞∑

n=1

ncn



4. Find the Taylor series (centered at zero) for the following functions.

a.
1

x + 2

b.
1

(x + 2)2

c. e−x2

d.

∫
e−x2

dx



5. Find the interval of convergence of the power series
∞∑

n=0

(x− 7)n

4n
√

n
.



6. Evaluate lim
x→0

sin x− x

x cos x− x
.

7. Find the sum of the series
∞∑

n=1

(
1√
n
− 1√

n + 1

)
, or show that it diverges.



Calculus II, Exam 3 Work Page


