

Calculus II Spring 2011 Assignment 9.1 Due October 21

Exercise 1. List the first five terms of the sequence $a_1 = 4$, $a_{n+1} = \frac{a_n}{a_n - 1}$.

Exercise 2. Find a formula for the general term a_n of the sequence $\{5, 1, 5, 1, 5, 1, ...\}$.

Exercises 3 - 11: Determine whether the sequence converges or diverges. If it converges, find the limit.

Exercise 3. $a_n = \frac{3+5n^2}{n+n^2}$ Exercise 4. $a_n = \frac{(-1)^n n^3}{n^3+2n^2+1}$

Exercise 5. $a_n = \cos(n/2)$ **Exercise 6.** $a_n = \tan\left(\frac{2n\pi}{1+8n}\right)$

Exercise 7.
$$a_n = \sqrt{\frac{n+1}{9n+1}}$$
 Exercise 8. $a_n = \ln(n+1) - \ln n$

Exercise 9.
$$a_n = \sqrt[n]{2^{1+3n}}$$
 Exercise 10. $a_n = \frac{\sin 2n}{1+\sqrt{n}}$

Exercise 11. $\{0, 1, 0, 0, 1, 0, 0, 0, 1, \ldots\}$

Exercise 12. Determine whether the sequence defined as follows is convergent or divergent:

$$a_1 = 1, a_{n+1} = 4 - a_n$$
 for $n \ge 1$.

What happens if the first term is $a_1 = 2$ instead?