Complex Variables
Assignment 11.2
Spring 2011

Exercise 1. Consider the function $f(z)=e^{1 / z}-1$. We have seen that it has a sequence of distinct zeros $\left\{z_{n}\right\}_{n=1}^{\infty}$ with the property that $z_{n} \rightarrow 0$, and yet it is not the zero function. Why doesn't this contradict the theorem on the isolation of zeros of analytic functions?

Exercise 2. Suppose that f has either a zero or a pole of order $n \geq 1$ at z_{0}. Prove that f^{\prime} / f has a simple pole at z_{0}.

Exercise 3. Find all the singularities of

$$
f(z)=\frac{(z-2)^{2}(z+4)}{1-\cos (\pi z)}
$$

and identify each as removable, a pole of a certain order, or an essential singularity.

Exercise 4. Repeat the preceding exercise for

$$
f(z)=\frac{(z-2 i)^{4}}{\sin (\pi i / z)-1}
$$

