Complex Variables Spring 2011

Assignment 3.2
Due September 19

Exercise 1. Recall that a function $f(z)$ is defined on a neighborhood of ∞ if there exists an $R>0$ so that the domain of f contains $\{z:|z|>R\}$.
a. Show that if $f(z)$ is defined on a neighborhood of ∞ if and only if $g(w)=f(1 / w)$ is defined on a deleted neighborhood of 0 .
b. Show that $\lim _{z \rightarrow \infty} f(z)=a$ if and only if $\lim _{w \rightarrow 0} f(1 / w)=a$.

Exercise 2. If $p(z)$ is a non-constant polynomial, prove that $\frac{1}{p(z)}$ is defined on a neighborhood of ∞ and that $\lim _{z \rightarrow \infty} \frac{1}{p(z)}=0$. [Suggestion: You can avoid an argument involving ϵ by using the preceding exercise and the limit laws.]

Exercise 3. Let $\log w$ denote the branch of the logarithm with $\arg w \in(-\pi, \pi]$.
a. Where is $\log \left(z^{2}\right)$ continuous? What about $\log \left(z^{3}\right)$?
b. Let $w^{1 / 2}=e^{\frac{1}{2} \log w}$. Where is $(1+z)^{1 / 2}$ continuous? What about $(1-z)^{1 / 2}$?

