Assignment 5.1 Due October 3

Exercise 1. Let A be a connected open set and suppose that f and g are both analytic functions on A. Prove that if $\operatorname{Re} f=\operatorname{Re} g$ everywhere on A then there is a purely imaginary number $i k$ so that $f=g+i k$. In other words, the real part of an analytic function (almost) determines it completely. [Suggestion: Apply the Cauchy-Riemann equations to the analytic function $f-g$.]

Exercise 2. 1.5.16. Note that this exercise proves that if the image of an analytic function is contained in any fixed line, then that function is actually constant.

Exercise 3. 1.5.28

Exercise 4. 1.5.29

