Complex Variables
Assignment 8.1 Spring 2011

Exercise 1. Define $f(z)=\sqrt{r} e^{i \theta / 2}$ where $z=r e^{i \theta}$ with $-\pi \leq \theta<\pi$. Let R denote the rectangle with vertices $i,-i, 2-i$ and $2+i$. Use Lemma 2.3.4 to help you evaluate $\int_{R} f(z) d z$.

Exercise 2. Let G be the region of textbook Exercise 2.3.5. Use Cauchy's Theorem for a Rectangle to prove that if f is analytic on G and on its boundary ∂G, then $\int_{\partial G} f(z) d z=0$.

