Complex Variables
Assignment 9.1

Exercise 1. Use Cauchy's Integral Formula to evaluate the following definite integrals. All contours are positively oriented.
a. $\int_{\gamma} \frac{\sin e^{z}}{z} d z$ where γ is any simple closed curve containing the origin.
b. $\int_{\gamma} \frac{z}{(z-a)(z-b)} d z$ where γ is any simple closed curve containing the distinct complex numbers a and b.
c. $\int_{\gamma} \frac{e^{z^{2}}}{z^{3}-1} d z$ where γ is the circle $|z-1|=1$.

Exercise 2. Show that if $a>1$ then

$$
\int_{0}^{2 \pi} \frac{d \theta}{a+\cos \theta}=\frac{2 \pi}{\sqrt{a^{2}-1}}
$$

[Hint: You can realize this integral as the parametrized form of an integral over the unit circle by setting $z=e^{i \theta}$.]

Exercise 3. Suppose that f is analytic on a disk D and that γ is a simple closed curve in D. Suppose that f is constant on γ. Prove that f takes on the same constant value everywhere inside γ as well.

