Complex Variables
Assignment 9.1
Spring 2011
Due October 31

Exercise 1. Use Cauchy's Integral Formula to evaluate the following definite integrals. All contours are positively oriented.
a. $\int_{\gamma} \frac{\sin e^{z}}{z^{3}} d z$ where γ is any simple closed curve containing the origin.
b. $\int_{\gamma} \frac{z}{(z-a)^{2}} d z$ where γ is any simple closed curve containing the complex number a. How does your result compare with that of Exercise 9.1.1b?
c. $\int_{\gamma} \frac{e^{z^{2}}}{\left(z^{2}-2\right)^{3}} d z$ where γ is the circle $|z-1|=2$.

Exercise 2. Let f be entire and suppose that there is a positive constant M and an $n \in \mathbb{N}$ so that $|f(z)| \leq M|z|^{n}$ for all z.
a. Prove that $f^{(n+1)}$ is constant.
b. Use part (a) and induction on n to prove that f is a polynomial of degree $\leq n$.

Exercise 3. Let f be an entire function.
a. Show that if $\operatorname{Re} f$ is bounded above then f is constant. [Suggestion: Consider the function $e^{f(z)}$.]
b. Conclude that f is constant under any of the following conditions: $\operatorname{Re} f$ is bounded below; $\operatorname{Im} f$ is bounded above; $\operatorname{Im} f$ is bounded below.

Exercise 4. Let f be entire. Suppose there are $r>0$ and $z_{0} \in \mathbb{C}$ so that $f(\mathbb{C}) \cap D\left(z_{0} ; r\right)=\varnothing$. Prove that f is constant. [Suggestion: Consider the function $1 /\left(f(z)-z_{0}\right)$.] That is, unless f is constant, the image of an entire function gets arbitrarily close to every point in the complex plane.

