

Complex Variables Spring 2011

Assignment 9.1 Due October 31

Exercise 1. Use Cauchy's Integral Formula to evaluate the following definite integrals. All contours are positively oriented.

- **a.** $\int_{\gamma} \frac{\sin e^z}{z^3} dz$ where γ is any simple closed curve containing the origin.
- **b.** $\int_{\gamma} \frac{z}{(z-a)^2} dz$ where γ is any simple closed curve containing the complex number a. How does your result compare with that of Exercise 9.1.1b?
- c. $\int_{\gamma} \frac{e^{z^2}}{(z^2-2)^3} dz$ where γ is the circle |z-1| = 2.

Exercise 2. Let f be entire and suppose that there is a positive constant M and an $n \in \mathbb{N}$ so that $|f(z)| \leq M|z|^n$ for all z.

- **a.** Prove that $f^{(n+1)}$ is constant.
- **b.** Use part (a) and induction on n to prove that f is a polynomial of degree $\leq n$.

Exercise 3. Let f be an entire function.

- **a.** Show that if Re f is bounded above then f is constant. [Suggestion: Consider the function $e^{f(z)}$.]
- **b.** Conclude that f is constant under any of the following conditions: Re f is bounded below; Im f is bounded above; Im f is bounded below.

Exercise 4. Let f be entire. Suppose there are r > 0 and $z_0 \in \mathbb{C}$ so that $f(\mathbb{C}) \cap D(z_0; r) = \emptyset$. Prove that f is constant. [Suggestion: Consider the function $1/(f(z) - z_0)$.] That is, unless f is constant, the image of an entire function gets arbitrarily close to every point in the complex plane.