Putnam Exam Seminar
Assignment 2
FALL 2012
Due September 10

Exercise 1. Suppose $a_{1}=1, a_{2}=5$ and $a_{n}=5 a_{n-1}-6 a_{n-2}$ for $n \geq 3$. Determine a_{n}.
Exercise 2. Suppose that $a_{0}=a_{1}=1$ and $a_{n}=6 a_{n-1}-9 a_{n-2}-2^{n}$ for $n \geq 2$. Find a_{2008}.
Exercise 3. Let $x_{1}, x_{2}, x_{3}, \ldots$ be a sequence of nonzero real numbers satisfying

$$
x_{n}=\frac{x_{n-2} x_{n-1}}{2 x_{n-2}-x_{n-1}} \text { for } n \geq 3 \text {. }
$$

Establish necessary and sufficient conditions on x_{1} and x_{2} for x_{n} to be an integer for infinitely many values of n.

Exercise 4. The sequence of integers $u_{0}, u_{1}, u_{2}, \ldots$ satisfies $u_{0}=1$ and

$$
u_{n+1} u_{n-1}=k u_{n} \text { for all } n \geq 1,
$$

where k is some fixed positive integer. If $u_{2012}=2012$, what are the possible values of k ?
Exercise 5. Let $\left\{x_{n}\right\}$ be a sequence of nonzero real numbers such that $x_{n}^{2}-x_{n-1} x_{n+1}=1$ for $n \geq 1$. Prove that there is a real number a so that $x_{n+1}=a x_{n}-x_{n-1}$ for all $n \geq 1$. [Putnam Exam, 1993, A-2]

