Putnam Exam SEminar
Assignment 7 FALL 2012

Exercise 1. Determine whether or not the matrix

$$
\left(\begin{array}{lllll}
2117 & 3218 & 5344 & 7511 & 1007 \\
9101 & 4800 & 6911 & 3578 & 8113 \\
1212 & 9014 & 4216 & 3178 & 2013 \\
3516 & 1019 & 2114 & 6104 & 3416 \\
5789 & 7534 & 7114 & 1472 & 8300
\end{array}\right)
$$

has an inverse.

Exercise 2. Prove that $\frac{x^{5}}{5}+\frac{x^{3}}{3}+\frac{7 x}{15}$ is an integer for every integral value of x.

Exercise 3. Prove that every positive integer has a multiple whose decimal representation involves all ten digits. [Putnam 1956, 2]

Exercise 4. Show that if $D \notin\{2,5,13\}$, then there exist $A, B \in\{2,5,13, D\}$ so that $A \neq B$ and $A B-1$ is not a perfect square.

