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In its simplest form, the pigeonhole principle (also known as Dirichlet’s box principle) has
the following statement.

Pigeonhole principle, version 1. If n+ 1 objects are distributed among n boxes, then one
of the boxes will contain at least 2 objects.

A somewhat stronger version is the following.

Pigeonhole principle, version 2. If kn + 1 objects are distributed among n boxes, then
one of the boxes will contain at least k + 1 objects.

Note that the first version follows from the second by setting k = 1. However, the pigeonhole
principle is rarely used in precisely this form, since one may not always be trying to distribute
a number of objects that is only 1 more than a multiple of the number of boxes. Therefore
the following even more general version can sometimes be helpful.

Pigeonhole principle, version 3. If m objects are distributed among n boxes, then one of
the boxes will contain at least dm/ne objects.

Here d·e denotes the ceiling function, i.e. dxe is the least integer greater than or equal to x.
It is not hard to see that this version implies the second version. It also implies the next
result, which is perhaps the most commonly encountered version of the pigeonhole principle.

Pigeonhole principle, version 4. If m objects are distributed among fewer than m boxes,
then one of the boxes will contain at least 2 objects.

Exercise 1. Given a set of n + 1 positive integers, none of which is greater than 2n, prove
that at least one member of this set must divide another member.

Exercise 2. Prove that if any five points are chosen on a sphere, then four of them lie on
some closed hemisphere.

Exercise 3. Prove that every set of 10 two-digit positive integers has two disjoint subsets
with the same sum of elements.


