Putnam Exam SEminar
QUIZ 1
FALL 2012
August 29

Problem 1. A function f is defined for all positive integers and satisfies

$$
f(1)=2012
$$

and

$$
f(1)+f(2)+\cdots+f(n)=n^{2} f(n) .
$$

Compute the exact value of $f(2012)$.

Problem 2. Let $n \geq 1$. Prove that $2^{2^{n}}-1$ has at least n distinct prime factors.

Problem 3. Show that every positive integer can be written as the sum of integers of the form $2^{s} 3^{t}$, such that no summand divides another.

