Putnam Exam SEminar
Quiz 10
FALL 2012

Problem 1. Suppose that a sequence $a_{1}, a_{2}, a_{3}, \ldots$ satisfies $0<a_{n} \leq a_{2 n}+a_{2 n+1}$ for all $n \geq 1$. Prove that the series $\sum_{n=1}^{\infty} a_{n}$ diverges. [Putnam 1994, A1]

Problem 2. Determine, with proof, the set of real numbers x for which

$$
\sum_{n=1}^{\infty}\left(\frac{1}{n} \csc \frac{1}{n}-1\right)^{x}
$$

converges. [Putnam 1988, A3]

Problem 3. Let $\{x\}$ denote the distance between the real number x and the nearest integer. For each positive integer n, evaluate

$$
F_{n}=\sum_{m=1}^{6 n-1} \min \left(\left\{\frac{m}{6 n}\right\},\left\{\frac{m}{3 n}\right\}\right)
$$

(Here $\min (a, b)$ denotes the minimum of a and b.) [Putnam 1997, B1]

Problem 4. For any positive integer n, let $\langle n\rangle$ denote the closest integer to \sqrt{n}. Evaluate

$$
\sum_{n=1}^{\infty} \frac{2^{\langle n\rangle}+2^{-\langle n\rangle}}{2^{n}}
$$

[Putnam 2001, B3]

