Problem 1. Let G be a finite group of order n with identity element e. If $a_{1}, a_{2}, \ldots, a_{n}$ are n elements of G, not necessarily distinct, prove that there are integers p and q with $1 \leq p \leq q \leq n$ such that $a_{p} a_{p+1} \cdots a_{q}=e$.

Problem 2. Let S be a set of real numbers which is closed under multiplication (that is, if a and b are in S, then so is $a b$). Let T and U be disjoint subsets of S whose union is S. Given that the product of any three (not necessarily distinct) elements of T is in T and that the product of any three elements of U is in U, show that at least one of the two subsets T, U is closed under multiplication. [Putnam 1995, A1]

Problem 3. Let G be a group with identity e and $\phi: G \rightarrow G$ a function such that

$$
\phi\left(g_{1}\right) \phi\left(g_{2}\right) \phi\left(g_{3}\right)=\phi\left(h_{1}\right) \phi\left(h_{2}\right) \phi\left(h_{3}\right)
$$

whenever $g_{1} g_{2} g_{3}=h_{1} h_{2} h_{3}$. Prove that there exists an element $a \in G$ so that $\psi(x)=a \phi(x)$ is a homomorphism (i.e. $\psi(x y)=\psi(x) \psi(y)$ for all $x, y \in G)$. [Putnam 1997, A4]

Problem 4. Is there a finite abelian group G such that the product of the orders of all its elements is 2^{2009} ? [Putnam 2009, A5]

Problem 5. Let G be a finite set of real $n \times n$ matrices $\left\{M_{i}\right\}, 1 \leq i \leq r$, which form a group under matrix multiplication. Suppose that $\sum_{i=1}^{r} \operatorname{tr}\left(M_{i}\right)=0$, where $\operatorname{tr}(A)$ denotes the trace of the matrix A. Prove that $\sum_{i=1}^{r} M_{i}$ is the $n \times n$ zero matrix. [Putnam 1985, B6]

