Problem 1. Functions f, g and h are differentiable on some open interval around 0 and satisfy the equations and initial conditions

$$
\begin{aligned}
f^{\prime} & =2 f^{2} g h+\frac{1}{g h}, f(0)=1 \\
g^{\prime} & =f g^{2} h+\frac{4}{f h}, g(0)=1 \\
h^{\prime} & =3 f g h^{2}+\frac{1}{f g}, h(0)=1
\end{aligned}
$$

Find an explicit formula for $f(x)$, valid in some open interval around 0. [Putnam 2009, A2]

Problem 2. For all real x, the real-valued function $y=f(x)$ satisfies

$$
y^{\prime \prime}-2 y^{\prime}+y=2 e^{x}
$$

(a) If $f(x)>0$ for all real x, must $f^{\prime}(x)>0$ for all real x ?
(b) If $f^{\prime}(x)>0$ for all real x, must $f(x)>0$ for all real x ?
[Putnam 1987, A3]

Problem 3. A not uncommon calculus mistake is to believe that the product rule for derivatives says that $(f g)^{\prime}=f^{\prime} g^{\prime}$. If $f(x)=e^{x^{2}}$, determine whether there exists a nonzero function defined on an open interval (a, b) such that this wrong product rule is true for x in (a, b). [Putnam 1988, A2]

Problem 4. If

$$
\begin{aligned}
& u=1+\frac{x^{3}}{3!}+\frac{x^{6}}{6!}+\cdots \\
& v=x+\frac{x^{4}}{4!}+\frac{x^{7}}{7!}+\cdots \\
& w=\frac{x^{2}}{2!}+\frac{x^{5}}{5!}+\frac{x^{8}}{8!}+\cdots
\end{aligned}
$$

prove that

$$
u^{3}+v^{3}+w^{3}-3 u v w=1
$$

[Putnam 1939, 14]

