Putnam Exam Seminar

Quiz 7
FALL 2012

Problem 1. Find all positive integers that are within 250 of exactly 15 perfect squares. (Note: A perfect square is the square of an integer; that is, a member of the set $\{0,1,4,9,16, \ldots\}$. We say that a is within n of b if $b-n \leq a \leq b+n$.) [Putnam 1994, B1]

Problem 2. What is the units (i.e. rightmost) digit of $\left[\frac{10^{20000}}{10^{100}+3}\right]$, where $[x]$ denotes the greatest integer which is less than or equal to x ? [Putnam 1986, A2]

Problem 3. Prove that there exist infinitely many integers n such that $n, n+1, n+2$ are each the sum of the squares of two integers. For example, $n=0$ is such an integer, since $0=0^{2}+0^{2}, 1=0^{2}+1^{2}$ and $2=1^{2}+1^{2}$. [Putnam 2000, A2]

Problem 4. Let A denote the sum of the decimal digits of 4444^{4444} and let B be the sum of the decimal digits of A. Find the sum of the decimal digits of B. [Int. Olympiad 1975]

Problem 5. Prove that, for any positive integer n,

$$
1^{n}+2^{n}+3^{n}+4^{n}
$$

is divisible by 5 if and only if n is not divisible by 4. [Hungary 1901]
Problem 6. Suppose p is an odd prime. Prove that

$$
\sum_{j=0}^{p}\binom{p}{j}\binom{p+j}{j} \equiv 2^{p}+1 \quad\left(\bmod p^{2}\right) .
$$

[Putnam Exam 1991, B-4]

