Problem 1. Determine the minimum value of

$$
(r-1)^{2}+\left(\frac{s}{r}-1\right)^{2}+\left(\frac{t}{s}-1\right)^{2}+\left(\frac{4}{t}-1\right)^{2}
$$

if r, s and t are real numbers with $1 \leq r \leq s \leq t \leq 4$.

Problem 2. Find the minimum value of

$$
|\sin x+\cos x+\tan x+\cot x+\sec x+\csc x|
$$

for real numbers x. [Putnam 2003, A3]

Problem 3. Find the least possible area of a convex set in the plane that intersects both branches of the hyperbola $x y=1$ and both branches of the hyperbola $x y=-1$. (A set S in the plane is called convex if for any two points in S the line segment connecting them is contained in S.) [Putnam 2007, A2]

Problem 4. For each continuous function $f:[0,1] \rightarrow \mathbb{R}$, let $I(f)=\int_{0}^{1} x^{2} f(x) d x$ and $J(x)=\int_{0}^{1} x(f(x))^{2} d x$. Find the maximum value of $I(f)-J(f)$ over all such functions f. [Putnam 2006, B5]

