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Surfaces

A surface S is a subset of R3 that is “locally planar,” i.e. when we
zoom in on any point P ∈ S , S looks like a piece of a plane.
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Orientable surfaces

A surface S is orientable if it is “two sided.”

Every surface shown above is orientable.

The Möbius band is not orientable.

If S is an oriented surface, an orientation of S is a choice of a
particular side of S as “positive.”
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Planar flux

If S is an oriented (finite) part of a plane and F = ai+ bj+ ck is a
constant vector field, the flux of F through S is defined to be

compn(F)A(S)

where:

n is the normal vector to S , in the “positive” direction;

A(S) is the area of S .

If F represents the “flow” of some quantity, then the flux is the
amount of “stuff” that passes through S in one unit of time.
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General flux

Suppose S is a more general oriented surface, and F = F(x , y , z) is
a possibly nonconstant vector field.

Subdivide S into (approximately) planar pieces with
(inherited) normal vectors nj and areas ∆Sj .
Choose a point Pj in the jth subdivision, and assume that
F ≈ F(Pj) throughout this subdivision.
Compute the “local planar flux” on each subdivision and add
to get the total approximate flux:∑

j

compnj(F(Pj ))∆Sj .

Take the limit as the areas of the subdivisions tend to zero to
get the flux of F through S :∫∫

S

F · dS = lim
∆S→0

∑
j

compnj(F(Pj ))∆Sj .
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Remarks

If we assume that nj is a unit vector, then

compnj (F(Pj ))∆Sj = (F(Pj ) · nj)∆Sj

= F(Pj) · (∆Sj nj)

= F(Pj) ·∆Sj ,

where ∆Sj is a normal vector with area ∆Sj .

The dS is thus meant to represent an “infinitesimal area
normal vector” to S .

As with planar flux, if F represents the “flow” of some
quantity, then

∫∫
S
F · dS represents the amount of “stuff” that

passes through S in one unit of time.
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Computing flux integrals

In order to compute
∫∫

S
F · dS, one must first parametrize S via a

two-variable vector function:

r(u, v) = x(u, v)i + y(u, v)j+ z(u, v)k, (u, v) ∈ D ⊂ R
2.

If we define

Tu =
∂r

∂u
=

∂x

∂u
i+

∂y

∂u
j+

∂z

∂u
k,

Tv =
∂r

∂v
=

∂x

∂v
i+

∂y

∂v
j+

∂z

∂v
k

then Tu × Tv is normal to S at every point. If the direction of n
agrees with the orientation of S , a Riemann sum argument shows

∫∫
S

F · dS =

∫∫
D

F(r(u, v)) · (Tu × Tv ) du dv .
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Example

Find the flux of the vector field

F = x i− z j+ yk

through the portion of the sphere x2 + y2 + z2 = 4 in the first

octant, oriented toward the origin.

The portion of the sphere in question can be parametrized as

r(u, v) =2 sin u cos v i+ 2 sin u sin v j+ 2cos u k,

0 ≤ u ≤ π/2, 0 ≤ v ≤ π/2.

The tangent vectors are

Tu = 2cos u cos v i+ 2cos u sin v j− 2 sin u k,

Tv = −2 sin u sin v i+ 2 sin u cos v j.
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We have

Tu × Tv = 4 sin2 u cos v i+ 4 sin2 u sin v j+ 4 sin u cos u k

and

F(r(u, v)) = 2 sin u cos v i− 2 cos u j+ 2 sin u sin v k,

so that
F · (Tu × Tv) = 8 sin3 u cos2 v .

Since Tu × Tv is oriented outward we have

∫∫
S

F · dS = −

∫ π/2

0

∫ π/2

0

8 sin3 u cos2 v du dv = −
4π

3
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A relationship between surface and line integrals

Stokes’ Theorem

Let S be an oriented surface bounded by a closed curve ∂S. If F is

a C 1 vector field and ∂S is oriented positively relative to S, then

∫∫
S

∇× F · dS =

∫
∂S

F · dr.

n

S

∂S
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Remarks

Stokes’ Theorem is another generalization of FTOC. It relates
the integral of “the derivative” of F on S to the integral of F
itself on the boundary of S .

If D ⊂ R
2 is a 2D region (oriented upward) and F = P i+ Qj

is a 2D vector field, one can show that
∫∫

D

∇× F · dS =

∫∫
D

∂Q

∂x
−

∂P

∂y
dA.

That is, Stokes’ Theorem includes Green’s Theorem as a
special case.
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Interpreting the curl

Let F be a vector field. Fix a point P ∈ R
3 and a unit vector n

based at P . Let Ca denote a circle of radius a, centered at P0, in
the plane normal to n, oriented using the right hand rule.

n

P

a

Ca

The tendency of F to “circulate” about n (in the positive sense)
can be measured by

lim
a→0+

1

πa2

∫
Ca

F · dr.
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If Da is the disk bounded by Ca, Stokes’ Theorem implies

lim
a→0+

1

πa2

∫
Ca

F · dr = lim
a→0+

1

πa2

∫∫
Da

∇× F · dS

= lim
a→0+

1

πa2
(∇× F)(P0) · nA(Da)

= (∇× F)(P0) · n.

Thus, the circulation at P about n is maximized when n points in

the same direction as ∇× F.
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A relationship between surface and triple integrals

Gauss’ Theorem (a.k.a. The Divergence Theorem)

Let E ⊂ R
3 be a solid region bounded by a surface ∂E. If F is a

C 1 vector field and ∂E is oriented outward relative to E, then

∫∫∫
E

∇ · F dV =

∫∫
∂E

F · dS.

∂E
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Remarks

This can be viewed as yet another generalization of FTOC.

Gauss’ Theorem reduces computing the flux of a vector field
through a closed surface to integrating its divergence over the
region contained by that surface.

As above, this can be used to derive a physical interpretation
of ∇ · F:

(∇ · F)(P) = lim
a→0+

1

V (Ba)

∫∫∫
Ba

∇ · F dV

= lim
a→0+

1

V (Ba)

∫∫
Sa

F · dS,

where P ∈ R
3, Ba and Sa are the solid ball and sphere

(respectively) of radius a centered at P .
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A vast generalization

We have studied various types of differentiation and
integration in 2 and 3 dimensions.

These can be generalized to arbitrary dimension n using the
notions of “manifold” and “differential form.”

The following theorem unifies and extends much of our
integration theory in one statement.

Generalized Stokes Theorem

If M is an n-dimensional “manifold with boundary,” and ω is a

“differential (n − 1)-form,” then

∫
M

dω =

∫
∂M

ω.
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