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Flux integrals

Surfaces

A surface S is a subset of R3 that is “locally planar,” i.e. when we
zoom in on any point P € 5§, S looks like a piece of a plane.
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Flux integrals

Orientable surfaces

A surface S is orientable if it is “two sided.”

@ Every surface shown above is orientable.

@ The Mobius band is not orientable.

If S is an oriented surface, an orientation of S is a choice of a
particular side of S as “positive.”
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Flux integrals

Planar flux

If S is an oriented (finite) part of a plane and F = ai + bj+ ck is a
constant vector field, the flux of F through S is defined to be

comp,(F) A(S)

where:
@ n is the normal vector to S, in the “positive” direction;
@ A(S) is the area of S.

If F represents the “flow” of some quantity, then the flux is the
amount of “stuff” that passes through S in one unit of time.
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Flux integrals

General flux

Suppose S is a more general oriented surface, and F = F(x,y, z) is
a possibly nonconstant vector field.
@ Subdivide S into (approximately) planar pieces with
(inherited) normal vectors n; and areas AS;.
@ Choose a point P; in the jth subdivision, and assume that
F ~ F(P;) throughout this subdivision.
@ Compute the “local planar flux" on each subdivision and add
to get the total approximate flux:

Z compy, (F(P})) AS;.

@ Take the limit as the areas of the subdivisions tend to zero to
get the flux of F through S:

//5 F-dS = AIisrgozzcompnj(F(Pj))A

[BETI[LEY Stokes’ & Gauss’ Theorems



Flux integrals

Remarks

@ If we assume that nj is a unit vector, then

compy, (F(P;j)) AS; = (F(Pj) - nj) AS;
F(P;) - (ASjnj)
= F(P)) - AS;,

/—\/—\

where AS; is a normal vector with area AS;.

The dS is thus meant to represent an “infinitesimal area
normal vector” to S.

@ As with planar flux, if F represents the “flow” of some
quantity, then [/ F - dS represents the amount of “stuff” that
passes through S in one unit of time.
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Flux integrals

Computing flux integrals

In order to compute ffs F - dS, one must first parametrize S via a
two-variable vector function:

r(u,v) = x(u, v)i + y(u, v)j + z(u, v)k, (u,v) € D C R?

If we define

T, = & G I 92y
o ol Ty

then T, x T, is normal to S at every point. If the direction of n
agrees with the orientation of S, a Riemann sum argument shows

JFeas= [[ Rt (xux T ducw.
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Example

Find the flux of the vector field
F=xi—zj+ yk

through the portion of the sphere x> + y? + z2 = 4 in the first
octant, oriented toward the origin.

The portion of the sphere in question can be parametrized as

r(u,v) =2sinucosvi+ 2sinusinvj+ 2cos uk,
0<u<w/2, 0<v<7/2

The tangent vectors are

T,=2cosucosvi+2cosusinvj—2sinuk,

T, = —2sinusinvi+ 2sinucos v j.
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Flux integrals

We have
T, x T, =4sin>ucosvi+ 4sin usinvj+ 4sinucos uk
and
F(r(u,v)) =2sinucosvi— 2cosuj+ 2sinusin vk,

so that
F-(T,xT,)=8sin®ucos®v.

Since T, x T, is oriented outward we have

w/2 pm/2 4
//F~dS:—/ / 85in3ucos2vdudv:——7T
s o Jo 3
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Stokes’ Theorem

A relationship between surface and line integrals

Stokes' Theorem

Let S be an oriented surface bounded by a closed curve 0S. IfF is
a C! vector field and OS is oriented positively relative to S, then

//VxF-dS: F-dr.
S as
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Stokes’ Theorem

Remarks

@ Stokes' Theorem is another generalization of FTOC. It relates
the integral of “the derivative” of F on S to the integral of F
itself on the boundary of S.

o If D C R? is a 2D region (oriented upward) and F = Pi+ Qj
is a 2D vector field, one can show that

floran [l 2L

That is, Stokes’ Theorem includes Green's Theorem as a
special case.
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Stokes’ Theorem

Interpreting the curl

Let F be a vector field. Fix a point P € R3 and a unit vector n
based at P. Let C, denote a circle of radius a, centered at Py, in
the plane normal to n, oriented using the right hand rule.

n

C,

The tendency of F to “circulate” about n (in the positive sense)
can be measured by

) 1
lim 5 F - dr.
a—0t ma C
a
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Stokes’ Theorem

If D, is the disk bounded by C,, Stokes’ Theorem implies

1 1
lim — [ F-dr= lim —/ V xF-dS
a—0+ ma2 Jc, a0+ ma2 J Jp,

) 1
= al_lg)]-*- E(V X F)(PQ) . nA(Da)

=(V x F)(Pp) - n.

Thus, the circulation at P about n is maximized when n points in
the same direction as V x F.
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Gauss' Theorem

A relationship between surface and triple integrals

Gauss' Theorem (a.k.a. The Divergence Theorem)

Let E C R3 be a solid region bounded by a surface OE. IfF is a
Cl vector field and OE is oriented outward relative to E, then

//EV‘FdV://aEF'dS.
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Gauss' Theorem

Remarks

@ This can be viewed as yet another generalization of FTOC.

@ Gauss' Theorem reduces computing the flux of a vector field
through a closed surface to integrating its divergence over the
region contained by that surface.

@ As above, this can be used to derive a physical interpretation
of V-F:

(V-F)(P) = lim + / | Bav Fdv
-dS,

a—>0+

a

where P € R3, B, and S, are the solid ball and sphere
(respectively) of radius a centered at P.
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Gauss' Theorem

A vast generalization

@ We have studied various types of differentiation and
integration in 2 and 3 dimensions.

@ These can be generalized to arbitrary dimension n using the
notions of “manifold” and “differential form.”

@ The following theorem unifies and extends much of our
integration theory in one statement.

Generalized Stokes Theorem
If M is an n-dimensional “manifold with boundary,” and w is a
“differential (n — 1)-form,” then

/dw:/ w.
M oM
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