Exercise 1. Fix a real number $x>2$. Let $p \leq x$ be a prime number. Prove that there is a natural number n_{p} so that

$$
p^{n_{p}} \leq x<p^{n_{p}+1}
$$

Exercise 2. Consider the x from the preceding exercise. Let

$$
\begin{aligned}
\mathcal{P} & =\{p \leq x \mid p \text { is prime }\} \\
\mathcal{N} & =\left\{p_{1}^{a_{1}} p_{2}^{a_{n}} \cdots p_{r}^{a_{r}} \mid r \geq 0, p_{i} \in \mathcal{P}, 1 \leq a_{i} \leq n_{p_{i}}\right\}
\end{aligned}
$$

Show that if $n \leq x$ is a positive integer, then $n \in \mathcal{N}$. Does $\mathcal{N}=\{n \leq x\}$?

Exercise 3. Let x be as above. Use the preceding exercise to show that

$$
\prod_{p \leq x}\left(1+\frac{1}{p}+\frac{1}{p^{2}}+\cdots+\frac{1}{p^{n_{p}}}\right) \geq \sum_{n \leq x} \frac{1}{n}
$$

Exercise 4. With x as above, show that

$$
\prod_{p \leq x}\left(1-\frac{1}{p}\right)^{-1} \geq \sum_{n \leq x} \frac{1}{n}
$$

Exercise 5. Prove that

$$
\lim _{x \rightarrow \infty} \prod_{p \leq x}\left(1-\frac{1}{p}\right)^{-1}=\infty
$$

Conclude that there are infinitely many prime numbers.

