Number Theory II
Assignment 11.1
FALL 2012
Due November 15

Exercise 1. Let G and H be groups.
a. Show that if $f_{1} \in \widehat{G}$ and $f_{2} \in \widehat{H}$, and we define $\left(f_{1} \otimes f_{2}\right)(x, y)=f_{1}(x) f_{2}(y)$, then $f_{1} \otimes f_{2} \in \widehat{G \times H}$.
b. Recall that given $f \in \widehat{G \times H}$, we defined $f_{G}(x)=f(x, e)$ and $f_{H}(y)=f(e, y)$. Show that $\left(f_{G}, f_{H}\right) \in \widehat{G} \times \widehat{H}$.
c. Show that the functions given by $\rho(f)=\left(f_{G}, f_{H}\right)$ and $\sigma\left(f_{1}, f_{2}\right)=f_{1} \otimes f_{2}$ are inverses.

Exercise 2. Show that the map $\alpha: \widehat{\mathbb{Z}} \rightarrow \mathbb{C}^{\times}$given by $\alpha(f)=f(1)$ is an isomorphism. Conclude that $|\widehat{\mathbb{Z}}| \neq|\mathbb{Z}|$.

