

Number Theory II Fall 2012

Assignment 3.2 Due September 18

Exercise 1. Interpret, and then verify, the following equalities. Throughout, g(x) and h(x) denote nonnegative functions.

a.
$$O(g(x)) + O(h(x)) = O(\max \{g(x), h(x)\}).$$

b. $g(x)O(h(x)) = O(g(x))O(h(x)) = O(g(x)h(x)).$
c. $O(O(g(x))) = O(g(x)).$

Exercise 2. Let f(x) and g(x) be polynomials with real coefficients of degrees m and n, respectively.

a. Prove that

$$\lim_{x \to \infty} \frac{f(x)x^{n-m}}{g(x)}$$

exists and is nonzero. [Suggestion: Factor the largest power of x out of both the numerator and denominator.]

b. Prove that

$$\frac{f(x)}{g(x)} = O\left(x^{m-n}\right)$$

for all sufficiently large x. In particular, if g(x) has no real roots, show this holds for $x \ge 1$.

c. What can you conclude about f(x) if you take g(x) = 1? Does this seems reasonable?

Exercise 3. Let $\epsilon > 0$.

a. Show that

$$\lim_{x \to \infty} \frac{\log x}{x^{\epsilon}} = 0.$$

- b. Explain why $\log x/x^{\epsilon}$ is bounded on any interval of the form [2, b].
- c. Prove that $\log x = O(x^{\epsilon})$ for $x \ge 2$. Does the implied constant depend on ϵ ?