Number Theory II
Assignment 3.2
FALL 2012
Due September 18

Exercise 1. Interpret, and then verify, the following equalities. Throughout, $g(x)$ and $h(x)$ denote nonnegative functions.
a. $O(g(x))+O(h(x))=O(\max \{g(x), h(x)\})$.
b. $g(x) O(h(x))=O(g(x)) O(h(x))=O(g(x) h(x))$.
c. $O(O(g(x)))=O(g(x))$.

Exercise 2. Let $f(x)$ and $g(x)$ be polynomials with real coefficients of degrees m and n, respectively.
a. Prove that

$$
\lim _{x \rightarrow \infty} \frac{f(x) x^{n-m}}{g(x)}
$$

exists and is nonzero. [Suggestion: Factor the largest power of x out of both the numerator and denominator.]
b. Prove that

$$
\frac{f(x)}{g(x)}=O\left(x^{m-n}\right)
$$

for all sufficiently large x. In particular, if $g(x)$ has no real roots, show this holds for $x \geq 1$.
c. What can you conclude about $f(x)$ if you take $g(x)=1$? Does this seems reasonable?

Exercise 3. Let $\epsilon>0$.
a. Show that

$$
\lim _{x \rightarrow \infty} \frac{\log x}{x^{\epsilon}}=0
$$

b. Explain why $\log x / x^{\epsilon}$ is bounded on any interval of the form $[2, b]$.
c. Prove that $\log x=O\left(x^{\epsilon}\right)$ for $x \geq 2$. Does the implied constant depend on ϵ ?

