Putnam Exam Seminar
Assignment 10
Fall 2013
Due November 25

Exercise 1. Determine whether or not the matrix

$$
\left(\begin{array}{ccccc}
117 & 218 & 344 & 511 & 1007 \\
101 & 800 & 911 & 578 & 113 \\
1212 & 14 & 4216 & 178 & 2013 \\
516 & 19 & 2114 & 104 & 3416 \\
789 & 534 & 114 & 472 & 300
\end{array}\right)
$$

has an inverse.

Exercise 2. Prove that $\frac{x^{5}}{5}+\frac{x^{3}}{3}+\frac{7 x}{15}$ is an integer for every integral value of x.

Exercise 3. Prove that, for any positive integer n,

$$
1^{n}+2^{n}+3^{n}+4^{n}
$$

is divisible by 5 if and only if n is not divisible by 4. [Hungary 1901]

Exercise 4. Consider the set $\{2,5,13\}$. Show that if $D \notin\{2,5,13\}$, then there exist $A, B \in\{2,5,13, D\}$ so that $A B-1$ is not a perfect square.

Exercise 5. Prove that every positive integer has a multiple whose decimal representation includes all ten digits. [Putnam 1956, 2]

Exercise 6. Let A denote the sum of the decimal digits of 4444^{4444} and let B be the sum of the decimal digits of A. Find the sum of the decimal digits of B. [Int. Olympiad 1975]

Exercise 7. Find all positive integers that are within 250 of exactly 15 perfect squares. (Note: A perfect square is the square of an integer. We say that a is within n of b if $b-n \leq a \leq b+n$.) [Putnam 1994, B1]

