

Putnam Exam Seminar Fall 2013

 $\begin{array}{c} Assignment \ 10 \\ \text{Due November} \ 25 \end{array}$

Exercise 1. Determine whether or not the matrix

(117	218	344	511	1007	
	101	800	911	578	113	
	1212	14	4216	178	2013	
	516	19	2114	104	3416	
ĺ	789	534	114	472	300	

has an inverse.

Exercise 2. Prove that $\frac{x^5}{5} + \frac{x^3}{3} + \frac{7x}{15}$ is an integer for every integral value of x.

Exercise 3. Prove that, for any positive integer n,

 $1^n + 2^n + 3^n + 4^n$

is divisible by 5 if and only if n is *not* divisible by 4. [Hungary 1901]

Exercise 4. Consider the set $\{2, 5, 13\}$. Show that if $D \notin \{2, 5, 13\}$, then there exist $A, B \in \{2, 5, 13, D\}$ so that AB - 1 is not a perfect square.

Exercise 5. Prove that every positive integer has a multiple whose decimal representation includes all ten digits. [Putnam 1956, 2]

Exercise 6. Let A denote the sum of the decimal digits of 4444^{4444} and let B be the sum of the decimal digits of A. Find the sum of the decimal digits of B. [Int. Olympiad 1975]

Exercise 7. Find all positive integers that are within 250 of exactly 15 perfect squares. (Note: A *perfect square* is the square of an integer. We say that a is within n of b if $b - n \le a \le b + n$.) [Putnam 1994, B1]