Exercise 1. Find all real-valued continuously differentiable functions f defined on the real line such that for all x

$$
(f(x))^{2}=1990+\int_{0}^{x}\left[(f(t))^{2}+\left(f^{\prime}(t)\right)^{2}\right] d t .
$$

[Putnam 1990, B1]

Exercise 2. Suppose f and g are non-constant, differentiable, real-valued functions defined on $(-\infty, \infty)$. Furthermore, suppose that for each pair of real numbers (x, y),

$$
\begin{aligned}
f(x+y) & =f(x) f(y)-g(x) g(y) \\
g(x+y) & =f(x) g(y)+g(x) f(y)
\end{aligned}
$$

If $f^{\prime}(0)=0$, prove that $(f(x))^{2}+(g(x))^{2}=1$ for all x. [Putnam 1991, B2]

Exercise 3. Prove that $f(n)=1-n$ is the only integer-valued function on the integers that satisfies the following conditions.
(i) $f(f(n))=n$, for all integers n;
(ii) $f(f(n+2)+2)=n$ for all integers n;
(iii) $f(0)=1$.
[Putnam 1992, A1]

Exercise 4. Let f be a twice-differentiable real-valued function satisfying

$$
f(x)+f^{\prime \prime}(x)=-x g(x) f^{\prime}(x),
$$

where $g(x) \geq 0$ for all real x. Prove that $|f(x)|$ is bounded. [Putnam 1997, B2]

