Exercise 1. A not uncommon calculus mistake is to believe that the product rule for derivatives says that $(f g)^{\prime}=f^{\prime} g^{\prime}$. If $f(x)=e^{x^{2}}$, determine, with proof, whether there exists an open interval (a, b) and a non-zero function g defined on (a, b) such that this wrong product rule is true for x in (a, b). [Putnam 1988, A2]

Exercise 2. Suppose f and g are non-constant, differentiable, real-valued functions defined on $(-\infty, \infty)$. Furthermore, suppose that for each pair of real numbers (x, y),

$$
\begin{aligned}
f(x+y) & =f(x) f(y)-g(x) g(y) \\
g(x+y) & =f(x) g(y)+g(x) f(y) .
\end{aligned}
$$

If $f^{\prime}(0)=0$, prove that $(f(x))^{2}+(g(x))^{2}=1$ for all x. [Putnam 1991, B2]

Exercise 3. Suppose the function $h: \mathbb{R}^{2} \rightarrow \mathbb{R}$ has continuous partial derivatives and satisfies the equation

$$
h=a \frac{\partial h}{\partial x}+b \frac{\partial h}{\partial y}
$$

for some constants a and b. Prove that if there is a constant M such that $|h(x, y)| \leq M$ for all $(x, y) \in \mathbb{R}^{2}$, then h is identically zero. [Putnam 2010, A3]

