Putnam Exam Seminar FALL 2013

Assignment 8
 Due November 11

Exercise 1. Consider a set S with a binary operation $*$, that is, for each $a, b \in S, a * b \in S$. Assume that $(a * b) * a=b$ for all $a, b \in S$. Prove that $a *(b * a)=b$ for all $a, b \in S$. [Putnam 2001, A1]

Exercise 2. Let S be a non-empty set with an associative operation that is left and right cancellative ($x y=x z$ implies $y=z$ and $y x=z x$ implies $y=z$). Assume that for every a in S the set $\left\{a^{n} \mid n=1,2,3, \ldots\right\}$ is finite. Must S be group? [Putnam 1989, B2]

Exercise 3. Let S be a set of real numbers which is closed under multiplication. Let T and U be disjoint subsets of S whose union is S. Given that the product of any three (not necessarily distinct) elements of T is in T and that the product of any three elements of U is in U, show that at least one of the two subsets T, U is closed under multiplication. [Putnam 1995, A1]

