

Putnam Exam Seminar Fall 2013

Assignment 8 Due November 11

Exercise 1. Consider a set S with a binary operation *, that is, for each $a, b \in S$, $a * b \in S$. Assume that (a * b) * a = b for all $a, b \in S$. Prove that a * (b * a) = b for all $a, b \in S$. [Putnam 2001, A1]

Exercise 2. Let S be a non-empty set with an associative operation that is left and right cancellative (xy = xz implies y = z and yx = zx implies y = z). Assume that for every a in S the set $\{a^n \mid n = 1, 2, 3, \ldots\}$ is finite. Must S be group? [Putnam 1989, B2]

Exercise 3. Let S be a set of real numbers which is closed under multiplication. Let T and U be disjoint subsets of S whose union is S. Given that the product of any three (not necessarily distinct) elements of T is in T and that the product of any three elements of U is in U, show that at least one of the two subsets T, U is closed under multiplication. [Putnam 1995, A1]