Putnam Exam Seminar
Quiz 2
FALL 2013

Exercise 1. The sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ is defined by $a_{1}=1, a_{2}=2, a_{3}=24$ and, for $n \geq 4$,

$$
a_{n}=\frac{6 a_{n-1}^{2} a_{n-3}-8 a_{n-1} a_{n-2}^{2}}{a_{n-2} a_{n-3}} .
$$

Show that a_{n} is an integer for all n. [Putnam 1999, A6, modified: The original problem asks you to show that, in addition, a_{n} is always divisible by n]

Exercise 2. Let $\left\{x_{n}\right\}_{n=0}^{\infty}$ be a sequence of nonzero real numbers such that $x_{n}^{2}-x_{n-1} x_{n+1}=1$ for $n \geq 1$. Prove that there is a real number a so that $x_{n+1}=a x_{n}-x_{n-1}$ for all $n \geq 1$. [Putnam 1993, A2]

Exercise 3. Show that every positive integer can be written as the sum of integers of the form $2^{s} 3^{t}$, such that no summand divides another.

