Putnam Exam Seminar

Quiz 5

Exercise 1. For all real x, the real-valued function $y=f(x)$ satisfies

$$
y^{\prime \prime}-2 y^{\prime}+y=2 e^{x} .
$$

a. If $f(x)>0$ for all real x, must $f^{\prime}(x)>0$ for all real x ?
b. If $f^{\prime}(x)>0$ for all real x, must $f(x)>0$ for all real x ?
[Putnam 1987, A3]

Exercise 2. Functions f, g and h are differentiable on some open interval around 0 and satisfy the equations and initial conditions

$$
\begin{aligned}
& f^{\prime}=2 f^{2} g h+\frac{1}{g h}, \quad f(0)=1 \\
& g^{\prime}=f g^{2} h+\frac{4}{f h}, \quad g(0)=1 \\
& h^{\prime}=3 f g h^{2}+\frac{1}{f g}, \quad h(0)=1
\end{aligned}
$$

Find an explicit formula for $f(x)$, valid in some open interval around 0. [Putnam 2009, A2]

