

Putnam Exam Seminar Fall 2013 Quiz 7 November 13

**Exercise 1.** Let G be a finite group of order n with identity element e. If  $a_1, a_2, \ldots, a_n$  are n elements of G, not necessarily distinct, prove that there are integers p and q with  $1 \le p \le q \le n$  such that  $a_p a_{p+1} \cdots a_q = e$ .

**Exercise 2.** Let \* be a commutative and associative binary operation on a set S. Assume that for every x and y in S, there exists z in S such that x \* z = y (this z may depend on x and y). Show that if a, b, c are in S and a \* c = b \* c, then a = b. [Putnam 2012, A2]

**Exercise 3.** Let G be a group with identity e and  $\phi: G \to G$  a function such that

$$\phi(g_1)\phi(g_2)\phi(g_3) = \phi(h_1)\phi(h_2)\phi(h_3)$$

whenever  $g_1g_2g_3 = h_1h_2h_3$ . Prove that there exists an element  $a \in G$  such that  $\psi(x) = a\phi(x)$ is a homomorphism (i.e.  $\psi(xy) = \psi(x)\psi(y)$  for all  $x, y \in G$ ). [Putnam 1997, A4]