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A homogeneous second order linear differential equation with constant coefficients has
the form

ay′′ + by′ + cy = 0 (1)

where a, b, c are real constants and a 6= 0. As we learned in class, central to the study of
such equations is the following version of the Principle of Superposition.

Theorem 1. If y1 and y2 are any two solutions to (1), then so is

y = c1y1 + c2y2, (2)

where c1 and c2 are arbitrary real numbers. If, moreover, y1 and y2 are linearly independent
(i.e. not proportional), then (2) gives a complete description of the solution set to (1).

This result reduced the problem of finding the general solution to (1) to the (perhaps!)
simpler problem of finding only two special (i.e. independent) solutions. To achieve this
latter goal, we introduced the characteristic polynomial

ar2 + br + c = 0 (3)

and found that we can always use its roots to produce a pair of independent solutions y1
and y2 to (1), thereby obtaining the general solution y = c1y1 + c2y2.

While this provides us with a very convenient and efficient means of finding the general
solution to a differential equation of the form (1), it is also somewhat unsatisfactory because
we’ve made no attempt to justify Theorem 1. There’s a very good reason for this. While
it isn’t hard to check that the functions y described in Theorem 1 are indeed solutions to
(1), checking that every solution actually has this form is much more difficult. This should
be contrasted with the procedures that we have for solving first order separable or linear
equations. In these cases the completeness of our solutions is immediate, since they are
obtained from a step by step algebraic manipulation of the original differential equation.

The goal of this note is to bridge this gap in our knowledge by proving Theorem 1. This
we will do by establishing the somewhat weaker result stated below.

Theorem 2. If the characteristic equation (3) has two distinct real roots r1 and r2 then the
general solution to (1) is given by

y = c1e
r1x + c2e

r2x (4)

where c1 and c2 are arbitrary constants. If the characteristic equation (3) has only a single
(repeated) real root r then the general solution to (1) is given by

y = (c1x+ c2)e
rx (5)



where c1 and c2 are arbitrary constants. And if the characteristic equation (3) has nonreal
(complex) roots α± βi then the general solution to (1) is given by

y = eαx(c1 cos βx+ c2 sin βx) (6)

where c1 and c2 are arbitrary constants.

Note that (somewhat ironically), Theorem 2 provides us with an explicit description of
the general solution to (1), precluding (from a purely computational standpoint) the need
for Theorem 1 in the first place. As such, anyone who wishes may skip the later derivation
of Theorem 1 from Theorem 2. We should also point out that in the course of the proof of
Theorem 2 we will find a deeper explanation for the specific forms of the solutions to (1).
Certainly better than “Well, just plug them in and notice that they happen to work,” which
is as much justification as we got in class.

Proof of Theorem 2. It is easy (but perhaps a bit tedious) to check that the functions given
in (4) to (6) do, indeed, yield solutions to (1) in each case. The question is: are these the
only solutions? We show in every case that they are.

We can deal with the first two cases simultaneously. Suppose that y is a solution to (1)
and that r1 is a real root of (3). Define a new function u by

u = ay′ + (ar1 + b)y. (7)

Since y and y′ are differentiable so is u, and in fact

u′ = ay′′ + (ar1 + b)y′.

Therefore

u′ − r1u = ay′′ + (ar1 + b)y′ − r1ay′ − r1(ar1 + b)y

= ay′′ + by′ − (ar21 + br1)y.

However, we know that ar21 + br1 + c = 0 so that ar21 + br1 = −c. That is

u′ − r1u = ay′′ + by′ − (ar21 + br1)y = ay′′ + by′ + cy = 0.

Therefore, u is a solution to the first order linear differential equation u′ − r1u = 0! Solving
this using our earlier techniques we find that we must have u = C1e

r1x for some constant
C1. If we put this back into (7) we find that

ay′ + (ar1 + b)y = C1e
r1x

which is another first order linear equation, this time in y! Dividing by a (which we know
to be nonzero) it becomes

y′ +

(
r1 +

b

a

)
y = C2e

r1x (8)

where C2 = C1/a.

If r2 is the other root of ar2+br+c = 0 (which may, in fact, equal r1), then the polynomial
ax2 + bx+ c must factor as a(x− r1)(x− r2). If we multiply out the latter polynomial and



compare its x coefficient with the first, we find that b = −a(r1 + r2), or −r2 = r1 + b/a.1 So
we can rewrite (8) as

y′ − r2y = C2e
r1x.

Using the integrating factor e−r2x and solving we find that y must be given by

y = C2e
r2x

∫
e(r1−r2)x dx.

There are now two cases. If r1 6= r2 (i.e. the characteristic equation has two distinct real
solutions) then r1 − r2 6= 0 and so we have∫

e(r1−r2)x dx =
e(r1−r2)x

r1 − r2
+ C3 (9)

which means that

y = C2e
r2x

(
e(r1−r2)x

r1 − r2
+ C3

)
= C4e

r1x + C3e
r2x,

where we have set C4 = C2/(r1− r2). Up to the names of the constants (which are arbitrary
anyway), this is exactly what we needed! But what if r1 = r2 so that (9) isn’t valid? In this
case we have

y = C2e
r2x

∫
e(r1−r2)x dx = C2e

r1x

∫
dx = C2e

r1x(x+ C3) = (C2x+ C4)e
r1x,

with C4 = C2C3, which gives us what we expected in this case, too.

Now let’s move on to the third case, in which the characteristic equation (3) has nonreal
roots α ± βi. Since we’re after real-valued solutions in a situation which more naturally
calls for complex numbers, things are a bit more complicated. The first thing we need is
a relationship between α, β and the coefficients of (3). As above, knowing the roots of a
polynomial allows us to factor it, so that ax2 + bx + c = a(x − (α + βi))(x − (α − βi)) =
a(x2 − 2αx + (α2 + β2)). Comparing coefficients in these expressions tells us that we must
have

b = −2aα (10)

c = a(α2 + β2). (11)

We’ll need these relationships shortly.

Now assume that y is a solution to (1). We’re going to perform a series of changes of
variables to get (1) into a friendlier form. We first set

u = e−αxy. (12)

Differentiating twice yields
u′′ = e−αx

(
y′′ − 2αy′ + α2y

)
1This can also be seen directly by appealing to the quadratic formula, which expresses r1 and r2 in terms of a, b and c.



so that

au′′ + β2au = e−αx
(
ay′′ − 2aαy′ + a(α2 + β2)y

)
= e−αx (ay′′ + by′ + cy)

= 0

where we have used (10), (11) and the fact that y solves (1). If we divide both sides of this
equation by a, which we know to be nonzero, we obtain the simple linear equation

u′′ + β2u = 0. (13)

At this point it’s worth remembering that our independent variable has been assumed to
be x. We now make the substitution t = βx. According to the chain rule

u′ =
du

dx
=
du

dt

dt

dx
= β

du

dt

u′′ =
d2u

dx
=

d

dx

du

dx
=

d

dx

(
β
du

dt

)
= β

d2u

dt2
dt

dx
= β2d

2u

dt2
.

Therefore (13) becomes

β2d
2u

dt2
+ β2u = 0.

Since we know α + βi is definitely not real it must be that β 6= 0. We can thus divide both
sides of the equation above by β2 which tells us that

d2u

dt2
+ u = 0. (14)

To solve (14) for u we perform one final substitution, letting

w =
du

dt
+ (tan t)u. (15)

Because tan t is only defined on intervals of the form In = (nπ − π/2, nπ + π/2), where n is
an integer, w is only defined on these intervals. So, from this point on let’s assume that our
t domain is a single In. We find that

dw

dt
− (tan t)w =

d2u

dt2
+ (sec2 t)u+ tan t

du

dt
− tan t

du

dt
− (tan2 t)u

=
d2u

dt2
+ (sec2 t− tan2 t)u

=
d2u

dt2
+ u

= 0.

That is, w satisfies the linear equation dw/dt− (tan t)w = 0, which is solved easily using the
integrating factor cos t. In fact

w = C1 sec t (16)



for some constant C1. Referring back to (15), this means that

du

dt
+ (tan t)u = C1 sec t,

which is once again linear. The integrating factor sec t allows us to finally obtain

u = C1 sin t+ C2 cos t

for some constant C2.

At this point the back substitutions t = βx and y = eαxu tell us immediately that

y = eαx (C2 cos βx+ C1 sin βx) , (17)

and we’re finished. Well, not quite. There’s still one technical point we need to address.
When we defined w in the previous paragraph we had to assume that its independent variable
t was restricted to the interval In. This means that the expression for y in (17) is only valid
on these intervals, and that in principle the constants C1 and C2 might vary as we vary n.
However, u and du/dt are continuous (since they are both differentiable), and we can take
limits at the endpoints of each interval to find that the constants match everywhere. For
example, if we have

u = A1 cos t+B1 sin t for t ∈ I0
u = A2 cos t+B2 sin t for t ∈ I1

then

B1 = lim
t→π/2−

(A1 cos t+B1 sin t) = u
(π

2

)
= lim

t→π/2+
(A2 cos t+B2 sin t) = B2

and a similar computation with du/dt gives A1 = A2. The general case is left to the reader.
This completes the proof of the third case.

The method of proof we’ve just employed actually still works (in principle) if we modify
(1) so that it is no longer homogeneous. That is, if we replace (1) with

ay′′ + by′ + cy = G(x)

where G(x) is nonzero, the substitution u = ay′+ (ar1 + b)y of the proof (in the case of real
roots) yields the first order differential equation

u′ − r1u = G(x)

for u, which is simply the inhomogeneous version of u′ − r1u = 0. This equation is still
linear, and if we solve it we can back substitute into u = ay′ + (ar1 + b)y and solve for
y. The reader is encouraged to give this a try in the cases where G(x) is a constant or an
exponential function.

Proof of Theorem 1. According to Theorem 2, the solutions to (1) are given by y = c1u1 +
c2u2 for some pair of independent functions u1, u2. For example, in the case that the
characteristic equation has two real roots r1 and r2 we have u1 = er1x and u2 = er2x. Let y1



and y2 be any other pair of independent solutions. Then there are constants a, b, c and d
so that y1 = au1 + bu2 and y2 = cu1 + du2. Because y1 and y2 are linearly independent, we
can invert this relationship to obtain u1 = Ay1 + By2 and u2 = Cy1 + Dy2 for some A, B,
C and D. Thus, if y = c1u1 + c2u2 is any solution to (1), then

y = c1(Ay1 +By2) + c2(Cy1 +Dy2) = (c1A+ c2C)y1 + (c1B + c2D)y2 = d1y1 + d2y2

for some constants d1 and d2. Since y was an arbitrary solution to (1), this shows that every
solution has the form stated in Theorem 1.


