Linear Algebra
Exam 2 Review
FALL 2013

Exercise 1. Let V be a vector space and let $H \subset V$ be a subspace. Show that if \mathbf{u} and \mathbf{v} are two vectors in H, then $\operatorname{Span}\{\mathbf{u}, \mathbf{v}\}$ is contained in H. Can you generalize this statement?

Exercise 2. Let V be a vector space and let $H, K \subset V$ be subspaces. The intersection of H and K, denoted $H \cap K$, is the collection of all vectors that belong to both H and K simultaneously. In set notation

$$
H \cap K=\{\mathbf{v}: \mathbf{v} \text { is in both } H \text { and } K\} .
$$

Show that $H \cap K$ is a subspace of V.

Exercise 3. Let V be a vector space and let $H, K \subset V$ be subspaces. The sum of H and K, denoted $H+K$, is the collection of all vectors of the form $\mathbf{u}+\mathbf{v}$ where $\mathbf{u} \in H$ and $\mathbf{v} \in K$. In set notation

$$
H+K=\{\mathbf{w}: \mathbf{w}=\mathbf{u}+\mathbf{v}, \mathbf{u} \in H, \mathbf{v} \in K\}
$$

Show that $H+K$ is a subspace of V.

Exercise 4. Let V and W be vector spaces and let $T: V \rightarrow W$ be a linear transformation. Let H be a subspace of W and let $T^{-1}(H)$ denote the set of all vectors $\mathbf{v} \in V$ so that $T(\mathbf{v}) \in H$. In set notation

$$
T^{-1}(H)=\{\mathbf{v} \in V: T(\mathbf{v}) \in H\}
$$

Show that $T^{-1}(H)$ is a subspace of $V .{ }^{1}$

Exercise 5. Let V and W be vector spaces, $T: V \rightarrow W$ be a linear transformation and $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}\right\}$ be a subset of V. Show that if $T(S)=\left\{T\left(\mathbf{v}_{1}\right), T\left(\mathbf{v}_{2}\right), \ldots, T\left(\mathbf{v}_{p}\right)\right\}$ is linearly independent then S is also linearly independent.

Exercise 6. Let H and K be subspaces of a vector space V, and suppose that

$$
\begin{aligned}
H & =\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}\right\} \\
K & =\operatorname{Span}\left\{\mathbf{w}_{1}, \mathbf{w}_{2}, \ldots, \mathbf{w}_{q}\right\} .
\end{aligned}
$$

Show that $H+K=\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}, \mathbf{w}_{1}, \mathbf{w}_{2}, \ldots, \mathbf{w}_{q}\right\}$.

[^0]Exercise 7. Let \mathcal{E} denote the standard basis for \mathbb{R}^{n}. Consider the linear transformation $I d: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ given by $I d(\mathbf{x})=\mathbf{x}$. Find $[I d]_{\mathcal{B}}^{\mathcal{E}}$. Do you recognize this matrix?

Exercise 8. Let V be a vector space and let $\mathcal{C}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}\right\}$ be a set of vectors in V with the following property: given any vector $\mathbf{w} \in V$, the vector equation $x_{1} \mathbf{v}_{1}+x_{2} \mathbf{v}_{2}+\cdots+x_{p} \mathbf{v}_{p}=$ \mathbf{w} has at most one solution. Show that \mathcal{C} must be a linearly independent set.

Exercise 9. Let

$$
H=\left\{\left(\begin{array}{c}
a+c \\
a+b \\
a+4 b-3 c \\
a+3 b-2 c
\end{array}\right): a, b, c \in \mathbb{R}\right\}
$$

a. Show that H is a subspace of \mathbb{R}^{4}.
b. Find a basis for H.

Exercise 10. Let $\mathcal{B}=\left\{1, t-1,(t-1)^{2}\right\}$ and let $\mathcal{C}=\left\{1, t, t^{2}\right\}$
a. Show that \mathcal{B} is a basis for \mathbb{P}_{2}.
c. Let $p(t)=-3 t+t^{2}$. Compute $[p(t)]_{\mathcal{B}}$.

Exercise 11. Let $T: V \rightarrow W$ be a linear transformation between two vector spaces. Let $T(V)$ denote the range of T, which is a subspace of W. If $\mathcal{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{n}\right\}$ is a basis for V, show that $\left\{T\left(\mathbf{b}_{1}\right), T\left(\mathbf{b}_{2}\right), \ldots, T\left(\mathbf{b}_{n}\right)\right\}$ spans $T(V)$.

Exercise 12. Let

$$
A=\left(\begin{array}{ccccc}
-3 & 11 & 9 & 4 & -1 \\
-4 & 3 & -2 & -2 & 0 \\
-2 & 4 & 2 & 2 & 4
\end{array}\right)
$$

a. Find bases for $\operatorname{Col} A$ and $\operatorname{Nul} A$.
b. Use your results from part (a) to determine if the map $\mathbf{x} \mapsto A \mathbf{x}$ is one-to-one or onto.

Exercise 13. Suppose that

$$
A=\left(\begin{array}{lll}
1 & 2 & b \\
2 & a & c \\
1 & 2 & d \\
4 & 8 & e
\end{array}\right)
$$

and that A can be row reduced to

$$
U=\left(\begin{array}{ccc}
1 & 0 & 2 \\
0 & 1 & -3 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

a. How are b, c, d, e related to the other entries in A ?
b. What value(s) can a have?
c. Find a basis for $\operatorname{Nul} A$.

Exercise 14. Show that the matrix

$$
\left(\begin{array}{ccc}
1 & a & b+c \\
1 & b & c+a \\
1 & c & a+b
\end{array}\right)
$$

is not invertible.

Exercise 15. Show that

$$
N=\left\{\left(\begin{array}{ccc}
a & 0 & c \\
0 & b & 0 \\
c & 0 & a
\end{array}\right) \quad: a, b, c \in \mathbb{R}\right\}
$$

is a subspace of $M_{3 \times 3}$.

Exercise 16. Let $\mathcal{B}=\left\{1, t, t^{3}\right\}$ and let $\mathcal{C}=\left\{5,2-t, t^{3}-7 t+18\right\}$. Show that \mathcal{B} and \mathcal{C} span the same subspace of \mathbb{P}_{3}.

[^0]: ${ }^{1}$ The notation $T^{-1}(H)$ is purely symbolic. It does not mean that T is in invertible.

