

Linear Algebra Fall 2013

IN-CLASS EXERCISES SET 1

Given square matrices A and B, we know that in general we do not expect the *commuta-tivity* relationship AB = BA to hold. In this problem we address the question: given A, can we determine the B for which AB = BA is true, i.e. the matrices B with which A commutes?

Exercise 1. Let A be a square matrix and let $B = a_0I + a_1A + a_2A^2 + \cdots + a_mA^m$, for any choice of real numbers $a_i \in \mathbb{R}$. Show that, in this case, AB = BA. We call B a polynomial in A, and this shows that A always commutes with polynomials in itself.

Exercise 2. So, what else might commute with a given square matrix A? Given another square matrix B, we define the *commutator* of A and B to be [A, B] = AB - BA. Show that AB = BA if and only if [A, B] = 0.

Exercise 3. Fix a square $n \times n$ matrix A and define $C_A : M_{n \times n} \to M_{n \times n}$ by $C_A(X) = [A, X]$. Show that C_A is a linear transformation, and that the kernel of C_A consists of precisely those matrices X that commute with A.

Exercise 4. Let $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ and define C_A as above. If \mathcal{B} denotes the "standard" basis for $M_{2\times 2}$, find $[C_A]$, the matrix for C_A relative to \mathcal{B} .

Exercise 5. Find a basis for Nul $[C_A]$. Use \mathcal{B} coordinates to "translate" these back into elements of the kernel of C_A .

Exercise 6. Show that the matrices you found above (i.e. those that commute with A) are all, in fact, polynomials in A. This shows that, for this particular matrix, AB = BA if and only if B is a polynomial in A.

Exercise 7. The preceding result is not true in general. Show that if we take A = cI, a scalar multiple of the identity (called a *scalar matrix*), then there are matrices that commute with A that are *not* polynomials in A.