Given square matrices A and B, we know that in general we do not expect the commutativity relationship $A B=B A$ to hold. In this problem we address the question: given A, can we determine the B for which $A B=B A$ is true, i.e. the matrices B with which A commutes?

Exercise 1. Let A be a square matrix and let $B=a_{0} I+a_{1} A+a_{2} A^{2}+\cdots+a_{m} A^{m}$, for any choice of real numbers $a_{i} \in \mathbb{R}$. Show that, in this case, $A B=B A$. We call B a polynomial in A, and this shows that A always commutes with polynomials in itself.

Exercise 2. So, what else might commute with a given square matrix A ? Given another square matrix B, we define the commutator of A and B to be $[A, B]=A B-B A$. Show that $A B=B A$ if and only if $[A, B]=0$.

Exercise 3. Fix a square $n \times n$ matrix A and define $C_{A}: M_{n \times n} \rightarrow M_{n \times n}$ by $C_{A}(X)=[A, X]$. Show that C_{A} is a linear transformation, and that the kernel of C_{A} consists of precisely those matrices X that commute with A.

Exercise 4. Let $A=\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)$ and define C_{A} as above. If \mathcal{B} denotes the "standard" basis for $M_{2 \times 2}$, find $\left[C_{A}\right]$, the matrix for C_{A} relative to \mathcal{B}.

Exercise 5. Find a basis for $\operatorname{Nul}\left[C_{A}\right]$. Use \mathcal{B} coordinates to "translate" these back into elements of the kernel of C_{A}.

Exercise 6. Show that the matrices you found above (i.e. those that commute with A) are all, in fact, polynomials in A. This shows that, for this particular matrix, $A B=B A$ if and only if B is a polynomial in A.

Exercise 7. The preceding result is not true in general. Show that if we take $A=c I$, a scalar multiple of the identity (called a scalar matrix), then there are matrices that commute with A that are not polynomials in A.

