Linear Algebra

In-CLASS EXERCISES

Recall that in Calculus II, when you were faced with the need to integrate a rational function (i.e. quotient of polynomials), the algorithm you were taught was to first find the partial fraction decomposition, and the integrate term by term. The algebra involved in finding these expansions was frequently quite involved, and in these exercises we will explore a (perhaps) more efficient way to compute them.

Exercise 1. Let $p_{1}(x), p_{2}(x), \ldots p_{n}(x) \in \mathbb{P}$ be distinct polynomials, and let $P(x)=p_{1}(x)$. $p_{2}(x) \cdots p_{n}(x)$. Let $N=\operatorname{deg} P(x)$. Show that $V=\left\{\left.\frac{q(x)}{P(x)} \right\rvert\, q(x) \in \mathbb{P}_{N-1}\right\}$ is a vector space, with basis $\mathcal{B}=\left\{\frac{1}{P(x)}, \frac{x}{P(x)}, \ldots, \frac{x^{N-1}}{P(x)}\right\} .{ }^{1}$

Exercise 2. Finding other bases for V can be complicated when the factors of $P(x)$ are repeated or irreducible quadratic. Rather than deal in complete generality, let's consider one special case. Take $N=4, p_{1}(x)=x-a, p_{2}=x-b$, and $p_{3}=x^{2}+c^{2}($ with $a \neq b, c \neq 0)$. Let $\mathcal{C}=\left\{\frac{1}{x-a}, \frac{1}{x-b}, \frac{1}{x^{2}+c^{2}}, \frac{x}{x^{2}+c^{2}}\right\}$, and let $W=\operatorname{Span} \mathcal{C}$. Show that W is a subspace of V. Argue, on the basis of dimension, that $V=W$.

Exercise 3. Find the change of basis matrix P from \mathcal{C} to \mathcal{B}.

Exercise 4. Invert P to obtain the change of basis matrix from \mathcal{B} to \mathcal{C}.

Exercise 5. Use the matrix from the preceding exercise to compute the partial fraction decomposition of

$$
\frac{2 x^{2}-3 x+1}{(x+2)(x+1)\left(x^{2}+3\right)}
$$

using only coordinates and matrix multiplication.

Exercise 6. Repeat the preceding exercise for at least two other "randomly" chosen rational functions.

Exercise 7. What happens if $a=b$? What happens if $c=0$?

[^0]
[^0]: ${ }^{1}$ You may find it useful to know that the set R of all rational functions is a vector space.

