

Introduction to Abstract Mathematics Fall 2013

Assignment 10.1 Due November 15

Exercise 1. Let A be a set and let $\pi \subseteq \mathcal{P}(A)$ have the following two properties:

- $\varnothing \notin \pi$;
- for all $a \in A$, there is a unique $P \in \pi$ so that $a \in P$.

Prove that if we define, for any $a, b \in A$, $a \sim b$ if and only if there is a $P \in \pi$ so that $a, b \in P$, then \sim is an equivalence relation.

Exercise 2. Let $f : A \to B$ be a function and let $R = \{(x, y) | f(x) = f(y)\} \subseteq A^2$. Prove that R is an equivalence relation on A.

Exercise 3. Given sets A, B and C, and relations $R \subseteq A \times B$ and $S \subseteq B \times C$, their *composite* is the relation $S \circ R \subseteq A \times C$ defined by

 $(a,c) \in S \circ R$ if and only if there is a $b \in B$ so that $(a,b) \in R$ and $(b,c) \in S$.

- **a.** Prove that if R and S are functions, then so is $S \circ R$.
- **b.** Prove that if $S \circ R$ and S are both functions, then for any $a \in A$ there is a $b \in B$ so that aRb. Does this mean R is necessarily a function as well?