Introduction to Abstract Mathematics
Assignment 10.2 FALL 2013

Exercise 1. Let $f: A \rightarrow B$ and $g: B \rightarrow C$. Recall that this means f and g are relations, and in a previous exercise we defined the composition $g \circ f$ of any two relations. We also prove that if f and g are functions, then so is $g \circ f: A \rightarrow C$.
a. Show that if f and g are both injective, so is $g \circ f$.
b. Show that if f and g are both surjective, so is $g \circ f$.
c. Show that if f and g are both bijective, so is $g \circ f$.

Exercise 2. Let $f: A \rightarrow B$ be a function. Show that if f is invertible (i.e. $f^{-1}: B \rightarrow A$ is also a function, then

$$
f \circ f^{-1}=\operatorname{Id}_{B} \text { and } f^{-1} \circ f=\operatorname{Id}_{A},
$$

where for any set $X, \operatorname{Id}_{X}: X \rightarrow X$ is the function defined by $\operatorname{Id}_{X}(x)=x$ for all $x \in X$.

Exercise 3. Let $f: A \rightarrow B$ be a function.
a. Show that f is injective if and only if there exists a function $g: B \rightarrow A$ so that $g \circ f=\operatorname{Id}_{A}$. Such a function g is called a left inverse of f.
b. Show that f is surjective if and only if there exists a function $h: B \rightarrow A$ so that $f \circ h=\operatorname{Id}_{B}$. Such a function h is called a right inverse of f.
c. Use the preceding parts to show that in the case that f is injective, any left inverse of it must be surjective. Furthermore, show that when f is surjective, any right inverse of it must be injective.
c'. [Optional] Part c can also be derived immediately by proving the following more general statement. If $f: A \rightarrow B$ and $g: B \rightarrow C$ are functions, and $g \circ f: A \rightarrow C$ is a bijection, then f is injective and g is surjective.

