

## Introduction to Abstract Mathematics Fall 2013

## Assignment 10.3 Due November 15

**Exercise 1.** Show that, using our "technical" definition of finite, for any  $n \in \mathbb{N}$  and any  $A \subseteq I_n$ , A is also finite, and  $|A| \leq n$ . Conclude that if  $f : B \to I_n$  is an injection, then B is finite, and  $|B| \leq n$ .

**Exercise 2.** Suppose that A and B are finite sets and that |A| = |B|. Let  $f : A \to B$  be a function. Show that f is injective if and only if it is surjective.

**Exercise 3.** Show that if A is infinite and  $x \notin A$ , then there is a bijection  $f : A \cup \{x\} \to A$ . That is, for infinite sets, "|A| + 1 = |A|".