

Introduction to Abstract Mathematics
Assignment 11.1 FALL 2013

Exercise 1. Let \mathcal{S} denote the collection of all sets. Given $A, B \in \mathcal{S}$, define $A \sim B$ if and only if there is a bijection $f: A \rightarrow B$. Prove that \sim is an equivalence relation on \mathcal{S}.

Exercise 2. Define $f: \mathbb{N} \rightarrow \mathbb{Z}$ as follows:

$$
f(n)= \begin{cases}-n / 2, & \text { if } n \text { is even } \\ (n-1) / 2, & \text { if } n \text { is odd }\end{cases}
$$

Prove that f is a bijection, i.e. that $|\mathbb{N}|=|\mathbb{Z}|$.

Exercise 3. Let $f: A \rightarrow B$. Prove that if f is a surjection and B is infinite, then A is infinite, and $|B| \leq|A|$. [Suggestion: For the cardinality comparison, use exercise 10.2.3]

