

Introduction to Abstract Mathematics Fall 2013

Assignment 11.1 Due November 22

Exercise 1. Let S denote the collection of all sets. Given $A, B \in S$, define $A \sim B$ if and only if there is a bijection $f: A \to B$. Prove that \sim is an equivalence relation on S.

Exercise 2. Define $f: \mathbb{N} \to \mathbb{Z}$ as follows:

$$f(n) = \begin{cases} -n/2, & \text{if } n \text{ is even;} \\ (n-1)/2, & \text{if } n \text{ is odd.} \end{cases}$$

Prove that f is a bijection, i.e. that $|\mathbb{N}| = |\mathbb{Z}|$.

Exercise 3. Let $f: A \to B$. Prove that if f is a surjection and B is infinite, then A is infinite, and $|B| \le |A|$. [Suggestion: For the cardinality comparison, use exercise 10.2.3]