

Introduction to Abstract Mathematics Fall 2013

Assignment 11.3 Due November 22

Exercise 1. Let $f_i : A_i \to B_i$ be functions for i = 1, 2, ..., n. Define

$$(f_1 \times f_2 \times \cdots \times f_n) : A_1 \times A_2 \times \cdots \wedge A_n \to B_1 \times B_2 \times \cdots \times B_n$$
$$(a_1, a_2, \dots, a_n) \mapsto (f(a_1), f(a_2), \dots, f(a_n)).$$

Prove that $f_1 \times f_2 \times \cdots \times f_n$ is a surjection (resp. injection, bijection) if and only if f_i is a surjection (resp. injection, bijection) for all i.

Exercise 2. Let X be a set and let $f: X \to \mathcal{P}(X)$ be a function. Let

$$Y = \{ x \in X \mid x \notin f(x) \}.$$

Prove that for all $x \in X$, $f(x) \neq Y$. Conclude that f cannot be surjective.

Exercise 3. We say that a sequence of numbers $\{a_1, a_2, a_3, \ldots\}$ is eventually zero if there is an $N \in \mathbb{N}$ so that $a_n = 0$ for all $n \ge N$ (N may depend on the sequence). Let \mathcal{S}_0 denote the set of all sequences with terms in \mathbb{N}_0 that are eventually zero. Prove that \mathcal{S}_0 is countable. [Suggestion: Consider building a function by using the exponents in the prime factorization of each natural number.]