

Introduction to Abstract Mathematics Fall 2013

Assignment 11.3
Due November 22

Exercise 1. Let $f_{i}: A_{i} \rightarrow B_{i}$ be functions for $i=1,2, \ldots, n$. Define

$$
\begin{aligned}
\left(f_{1} \times f_{2} \times \cdots \times f_{n}\right): A_{1} \times A_{2} \times \cdots A_{n} & \rightarrow B_{1} \times B_{2} \times \cdots \times B_{n} \\
\left(a_{1}, a_{2}, \ldots, a_{n}\right) & \mapsto\left(f\left(a_{1}\right), f\left(a_{2}\right), \ldots, f\left(a_{n}\right)\right) .
\end{aligned}
$$

Prove that $f_{1} \times f_{2} \times \cdots \times f_{n}$ is a surjection (resp. injection, bijection) if and only if f_{i} is a surjection (resp. injection, bijection) for all i.

Exercise 2. Let X be a set and let $f: X \rightarrow \mathcal{P}(X)$ be a function. Let

$$
Y=\{x \in X \mid x \notin f(x)\}
$$

Prove that for all $x \in X, f(x) \neq Y$. Conclude that f cannot be surjective.

Exercise 3. We say that a sequence of numbers $\left\{a_{1}, a_{2}, a_{3}, \ldots\right\}$ is eventually zero if there is an $N \in \mathbb{N}$ so that $a_{n}=0$ for all $n \geq N(N$ may depend on the sequence $)$. Let \mathcal{S}_{0} denote the set of all sequences with terms in \mathbb{N}_{0} that are eventually zero. Prove that \mathcal{S}_{0} is countable. [Suggestion: Consider building a function by using the exponents in the prime factorization of each natural number.]

