Exercise 1. Show that subtraction, as a binary operation on \mathbb{Z}, is neither associative nor commutative. Do the same for division, as an operation on $\mathbb{Q}-\{0\}$.

Exercise 2. For $a, b \in \mathbb{R}$, define $a * b=\frac{a+b}{2}$. Show that $*$ is a commutative, but nonassociative binary operation on \mathbb{R}.

Exercise 3. Let A, B, C, D be sets and let $f: A \rightarrow B, g: B \rightarrow C$ and $h: C \rightarrow D$. be functions. Prove that $h \circ(g \circ f)=(h \circ g) \circ f$, i.e. that function composition is associative.

Exercise 4. Recall that the set of symmetries of the square is

$$
D_{4}=\left\{R_{0}, R_{1}, R_{2}, R_{3}, H, V, F_{1}, F_{2}\right\}
$$

where R_{k} is counterclockwise rotation by $90 k$ degrees, H is the flip across the horizontal line of symmetry, V is the flip across the vertical line of symmetry, F_{1} is the flip across the slope 1 diagonal, and F_{2} is the flip across the slope -1 diagonal. Construct the Cayley table for composition as a binary operation on D_{4}.

