

Introduction to Abstract Mathematics Fall 2013

Assignment 13.1 Due December 10

Exercise 1. Let $m \in \mathbb{N}$, $m \geq 2$. Show that the binary operations $+_m$ and \times_m on $\mathbb{Z}/m\mathbb{Z} = \{[0], [1], \ldots, [m-1]\}$ are well-defined. That is, given $[a], [a'], [b], [b'] \in \mathbb{Z}/m\mathbb{Z}$ with [a] = [a'] and [b] = [b'], prove the following.

- **a.** [a+b] = [a'+b'].
- **b.** [ab] = [a'b'].

Exercise 2. Construct the Cayley tables for $\mathbb{Z}/6\mathbb{Z}$ under the binary operations $+_6$ and \times_6 .

Exercise 3. Let G be a group and let $a, b \in G$. Prove that $(ab)^{-1} = b^{-1}a^{-1}$. Generalize.

Exercise 4. Let G be a group. Given $h \in G$, define $\rho_h : G \to G$ by $\rho(g) = gh$.

- **a.** Prove that ρ_h is a bijection.
- **b.** Prove that the function $R: G \to S(G)$ given by $R(h) = \rho_h$ is an injection, and that for any $g, h \in G$, R(gh) = R(h)R(g).