Exercise 1. Let $m \in \mathbb{N}, m \geq 2$. Show that the binary operations $+_{m}$ and \times_{m} on $\mathbb{Z} / m \mathbb{Z}=$ $\{[0],[1], \ldots,[m-1]\}$ are well-defined. That is, given $[a],\left[a^{\prime}\right],[b],\left[b^{\prime}\right] \in \mathbb{Z} / m \mathbb{Z}$ with $[a]=\left[a^{\prime}\right]$ and $[b]=\left[b^{\prime}\right]$, prove the following.
a. $[a+b]=\left[a^{\prime}+b^{\prime}\right]$.
b. $[a b]=\left[a^{\prime} b^{\prime}\right]$.

Exercise 2. Construct the Cayley tables for $\mathbb{Z} / 6 \mathbb{Z}$ under the binary operations $+_{6}$ and $\times{ }_{6}$.

Exercise 3. Let G be a group and let $a, b \in G$. Prove that $(a b)^{-1}=b^{-1} a^{-1}$. Generalize.

Exercise 4. Let G be a group. Given $h \in G$, define $\rho_{h}: G \rightarrow G$ by $\rho(g)=g h$.
a. Prove that ρ_{h} is a bijection.
b. Prove that the function $R: G \rightarrow S(G)$ given by $R(h)=\rho_{h}$ is an injection, and that for any $g, h \in G, R(g h)=R(h) R(g)$.

