

Introduction to Abstract Mathematics
Assignment 13.2
FALL 2013

Exercise 1. Let $m \in \mathbb{N}, m \geq 2$. Prove that if $a \equiv b(\bmod m)$, then $\operatorname{gcd}(a, m)=\operatorname{gcd}(b, m)$. Thus, given an equivalence class $C \in \mathbb{Z} / m \mathbb{Z}$ it makes sense to define $\operatorname{gcd}(C, m)=\operatorname{gcd}(a, m)$, where $a \in C$ is arbitrary.

Exercise 2. Prove that $U(m)=\{C \in \mathbb{Z} / m \mathbb{Z} \mid \operatorname{gcd}(C, m)=1\}$ is a group under $\times{ }_{m}$.

Exercise 3. Construct the Cayley tables for $U(5)$ and $U(9)$.

Exercise 4. Prove that $\mathbb{Z} / m \mathbb{Z}$ (under $+_{m}$) is a cyclic group, i.e. that there is a $C \in \mathbb{Z} / m \mathbb{Z}$ so that $\langle C\rangle=\mathbb{Z} / m \mathbb{Z}$.

