

Introduction to Abstract Mathematics Fall 2013

Assignment 2.1 Due September 13

Exercise 1. Let P and Q be statements. Verify the following logical equivalences by either constructing a truth table or by using established equivalences.

- **a.** $P \land P \cong P \lor P \cong P$
- **b.** $P \rightarrow Q \cong \neg Q \rightarrow \neg P$
- c. $(P \to Q) \land (\neg P \to Q) \cong Q$
- **d.** $(P \land \neg Q) \rightarrow \neg P \cong P \rightarrow Q$

Exercise 2. If P, Q and R are statements, are $P \to (Q \lor R)$ and $(P \to Q) \lor (P \to R)$ logically equivalent? Does one imply the other?

Exercise 3. Let A and B be symbolic statements built from the statement variables and logical connectives. Suppose that A is a contradiction. Show that A implies B. Conversely, show that if B implies A, then B is also a contradiction.

Exercise 4. Let H, C and X be symbolic statements built from statements variables and logical connectives. Suppose that X is a contradiction. Show that if $H \wedge (\neg C)$ implies X, then H implies C.

Exercise 5. Let A, B and C be symbolic statements built from statement variables and logical connectives. Show that if A implies B, then $B \to C$ implies $A \to C$.