Introduction to Abstract Mathematics FALL 2013

AsSIGNMENT 2.2
Due September 13

Exercise 1. Use a proof by contradiction to show that if $n=2 k+1$ for some integer k, then n is odd. [Note: While intuitively obvious, this fact does require some kind of proof, since odd (the negation of even) simply means "not divisible by 2 ."] Conclude that n is odd if and only if $n=2 k+1$ for some integer k.

Exercise 2. Use the preceding exercise to prove that an integer n is even if and only if n^{2} is even.

Exercise 3. Consider the following result.
Lemma. If n is an integer, then there are (unique) integers k and r, with $0 \leq r<3$, so that $n=3 k+r$.

Assuming the truth of the lemma, prove that for any integer n, the quantity

$$
\frac{n(n+1)(2 n+1)}{6}
$$

is an integer.

Exercise 4.Let P, Q and R be statements.
a. Show that $(P \rightarrow Q) \wedge(R \rightarrow \neg Q) \neq P \rightarrow \neg R$.
b. Nonetheless, explain why a proof of $P \rightarrow Q$ and $R \rightarrow \neg Q$ would be enough to establish $P \rightarrow \neg R$.

