

Introduction to Abstract Mathematics Fall 2013

Assignment 2.2 Due September 13

Exercise 1. Use a proof by contradiction to show that if n = 2k + 1 for some integer k, then n is odd. [*Note:* While intuitively obvious, this fact does require some kind of proof, since *odd* (the negation of *even*) simply means "not divisible by 2."] Conclude that n is odd if and only if n = 2k + 1 for some integer k.

Exercise 2. Use the preceding exercise to prove that an integer n is even if and only if n^2 is even.

Exercise 3. Consider the following result.

Lemma. If n is an integer, then there are (unique) integers k and r, with $0 \le r < 3$, so that n = 3k + r.

Assuming the truth of the lemma, prove that for any integer n, the quantity

$$\frac{n(n+1)(2n+1)}{6}$$

is an integer.

Exercise 4.Let P, Q and R be statements.

- **a.** Show that $(P \to Q) \land (R \to \neg Q) \ncong P \to \neg R$.
- **b.** Nonetheless, explain why a proof of $P \to Q$ and $R \to \neg Q$ would be enough to establish $P \to \neg R$.