Introduction to Abstract Mathematics FALL 2013

Exercise 1. Conjecture and prove a formula for the sum of the first n Fibonacci numbers.

Exercise 2. For $n \geq 1$, the nth harmonic number is defined to be

$$
H_{n}=\sum_{k=1}^{n} \frac{1}{k} .
$$

Prove that for all $n \geq 0, H_{2^{n}} \geq 1+\frac{n}{2}$.
Exercise 3. What is wrong with the following "proof" that all horses have the same color?
We induct on n, the number of horses. If $n=1$, then since every horse has the same color as itself, the result is true. Now suppose that, for some n, we have proven that every horse in a group of n horses has the same color. Consider a group of $n+1$ horses. By the inductive hypothesis, the first n horses in this group all have the same color, and the last n also all have the same color. Since the nth horse is in both groups, all $n+1$ horses must have its color, and hence the whole group has a single color. By induction, this completes the proof.

Exercise 4. Show that for any $n \geq 1$, a $2^{n} \times 2^{n}$ grid with one square removed can be completely covered with (non-overlapping) L-shaped tiles (shown below). An example in the case $n=3$ is given below.

L-shaped tile

Sample tiling

