Introduction to Abstract Mathematics FALL 2013

Assignment 4.1

 Due September 27Exercise 1. Let F_{n} denote the nth Fibonacci number (where, as in class, we set $F_{0}=0$ and $F_{1}=1$). Prove that for all $n \geq 0$,

$$
F_{n}=\frac{1}{\sqrt{5}}\left(\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right)
$$

Exercise 2.[The Division Algorithm] Let $m>0$ be an integer. Prove that for every integer $n \geq 1$, there exist integers q and r, with $0 \leq r<m$, so that $n=q m+r$.

Exercise 3. Given a sequence of non-negative real numbers

$$
a_{1} \geq a_{2} \geq \cdots \geq a_{2 n+1} \geq 0
$$

prove that

$$
a_{1}^{2}-a_{2}^{2}+a_{3}^{2}-\cdots+a_{2 n+1}^{2} \geq\left(a_{1}-a_{2}+a_{3}-\cdots+a_{2 n+1}\right)^{2}
$$

