Introduction to Abstract Mathematics FALL 2013

AsSIGNMENT 4.2
Due September 27

Exercise 1. Given integers n and k, with $0 \leq k \leq n$, the (n, k) binomial coefficient is

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!},
$$

where we define $0!=1$.
a. Prove that if $1 \leq k \leq n-1$, then $\binom{n-1}{k-1}+\binom{n-1}{k}=\binom{n}{k}$.
b. Prove that every binomial coefficient is an integer.

Exercise 2. Suppose you are given a rectangular chocolate bar made up of $m \times n$ squares of chocolate $(m, n \geq 1)$. Your task is to divide it into $m n$ individual squares by breaking it (or any of the intermediate pieces) along any of its horizontal or vertical perforations. An example in the 2×2 case is shown below.

Prove that no matter how you choose to break the chocolate bar, it will always require exactly $m n-1$ breaks.

Exercise 3. Let F_{n} denote the nth Fibonacci number. Prove that for all $m, n \geq 1$, if m divides n, then F_{m} divides F_{n}. [Suggestion: Instead prove that F_{m} divides $F_{k m}$ for all $k, m \geq 1$. Why is this equivalent?]

