Introduction to Abstract Mathematics
Assignment 5.1 FALL 2013

Due October 4

Exercise 1. In this exercise we will provide another proof that $\sqrt{2}$ is irrational. Assume for the sake of contradiction that $\sqrt{2}$ is rational.
a. Let $p, q \in \mathbb{N}$ with $p / q=\sqrt{2}$. Show that $0<p-q<q$.
b. With p, q as above, show that

$$
\frac{2 q-p}{p-q}=\sqrt{2}
$$

c. Use the Well-Ordering Principle to arrive at a contradiction.

Exercise 2. Consider the equation

$$
\begin{equation*}
a^{2}+b^{2}=3\left(s^{2}+t^{2}\right) \tag{1}
\end{equation*}
$$

a. Show that if $a, b, s, t \in \mathbb{N}_{0}$ satisfy (1), then a and b are both divisible by 3 . [Suggestion: Use the Lemma of Exercise 2.2.3.]
b. By writing a and b of part a as multiples of 3 , find a second solution $a^{\prime}, b^{\prime}, s^{\prime}, t^{\prime} \in \mathbb{N}_{0}$ to (1).
c. Let $H(x, y, z, w)=x+y+z+w$. Show that if $H(a, b, s, t)>0$, then $0<H\left(a^{\prime}, b^{\prime}, s^{\prime}, t^{\prime}\right)<$ $H(a, b, s, t)$.
d. Use parts a-c and the Well-Ordering Principle to give a proof that the only solution to (1) in \mathbb{N}_{0} is $a=b=s=t=0$.

